Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 10
Dr. Rohban and Mr. Hasani
Spring 2023
Session 10
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 11
Dr. Rohban and Mr. Hasani
Spring 2023
Session 11
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 12
Dr. Rohban and Mr. Hasani
Spring 2023
Session 12
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 13
Dr. Rohban and Mr. Hasani
Spring 2023
Session 13
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 14
Dr. Rohban and Mr. Hasani
Spring 2023
Session 14
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 15
Dr. Rohban and Mr. Hasani
Spring 2023
Session 15
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 16
Dr. Rohban and Mr. Hasani
Spring 2023
Session 16
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 17
Dr. Rohban and Mr. Hasani
Spring 2023
Session 17
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 18
Dr. Rohban and Mr. Hasani
Spring 2023
Session 18
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 19
Dr. Rohban and Mr. Hasani
Spring 2023
Session 19
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 20
Dr. Rohban and Mr. Hasani
Spring 2023
Session 20
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 21
Dr. Rohban and Mr. Hasani
Spring 2023
Session 21
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 22
Dr. Rohban and Mr. Hasani
Spring 2023
Session 22
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 23
Dr. Rohban and Mr. Hasani
Spring 2023
Session 23
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 25
Dr. Rohban and Mr. Hasani
Spring 2023
Session 25
Media is too big
VIEW IN TELEGRAM
Reinforcement Learning Course
Dr. Rohban and Mr. Hasani
Spring 2023
Session 26
Dr. Rohban and Mr. Hasani
Spring 2023
Session 26
سلام به همهی دوستان
عزیزانی که علاقهمند به پژوهش در حوزه یادگیری ماشین اعتمادپذیر در آزمایشگاه RIML هستند، لطفا رزومه و مدت زمانی که براشون مقدور هست به پژوهش اختصاص بدهند را به ایمیل زیر ارسال کنند. نهایتاََ یک تیم از دوستان علاقهمند تشکیل میشود و یک فرآیند آموزش و در ادامه تعریف صورت مسئله برای پژوهش صورت خواهد گرفت که خروجی نهایی در قالب مقاله برای کنفرانسهای مرتبط ML ارسال خواهد شد. بحث توصیهنامه برای دوستان حاضر در پروژه از سمت اساتید در نظر گرفته میشود.
کارهای مشابه آزمایشگاه در این حوزه را در این مقاله و این لینک میتوانید بررسی بفرمایید.
hsirm97@gmail.com
عزیزانی که علاقهمند به پژوهش در حوزه یادگیری ماشین اعتمادپذیر در آزمایشگاه RIML هستند، لطفا رزومه و مدت زمانی که براشون مقدور هست به پژوهش اختصاص بدهند را به ایمیل زیر ارسال کنند. نهایتاََ یک تیم از دوستان علاقهمند تشکیل میشود و یک فرآیند آموزش و در ادامه تعریف صورت مسئله برای پژوهش صورت خواهد گرفت که خروجی نهایی در قالب مقاله برای کنفرانسهای مرتبط ML ارسال خواهد شد. بحث توصیهنامه برای دوستان حاضر در پروژه از سمت اساتید در نظر گرفته میشود.
کارهای مشابه آزمایشگاه در این حوزه را در این مقاله و این لینک میتوانید بررسی بفرمایید.
hsirm97@gmail.com
ویدئوهای درس پردازش هوشمند تصاویر زیست-پزشکی، دکتر رهبان، پائیز ۱۴۰۲:
https://www.aparat.com/playlist/7606670
ویدئوهای درس یادگیری تقویتی، دکتر رهبان، بهار ۱۴۰۳:
https://www.aparat.com/playlist/9319081
https://www.aparat.com/playlist/7606670
ویدئوهای درس یادگیری تقویتی، دکتر رهبان، بهار ۱۴۰۳:
https://www.aparat.com/playlist/9319081
#اخبار_پژوهشی_آزمایشگاه
چاپ مقاله
RODEO: Robust Outlier Detection via Exposing Adaptive Outliers
در کنفراس ICML2024 تحت نظارت آقای دکتر رهبان
https://www.linkedin.com/posts/mohammad-hossein-rohban-75567677_we-are-pleased-that-our-most-recent-paper-activity-7191832868602478592-TipI?utm_source=share&utm_medium=member_android
چاپ مقاله
RODEO: Robust Outlier Detection via Exposing Adaptive Outliers
در کنفراس ICML2024 تحت نظارت آقای دکتر رهبان
https://www.linkedin.com/posts/mohammad-hossein-rohban-75567677_we-are-pleased-that-our-most-recent-paper-activity-7191832868602478592-TipI?utm_source=share&utm_medium=member_android
Linkedin
We are pleased that our most recent paper noscriptd "RODEO: Robust Outlier Detection via Exposing Adaptive Outliers," has been accepted…
We are pleased that our most recent paper noscriptd "RODEO: Robust Outlier Detection via Exposing Adaptive Outliers," has been accepted in ICML 2024.
TL;DR: Looking for an adversarially robust anomaly detection? Synthetic outlier samples whose distribution…
TL;DR: Looking for an adversarially robust anomaly detection? Synthetic outlier samples whose distribution…
#موقعیت_پژوهشی
سلام به همهی دوستان.
قابل توجه علاقهمندان به پژوهش در حوزهی کشف دارو (پیشبینی خواص مولکولی) با روشهای مبتنی بر شبکههای عصبی عمیق، پروژهای با این عنوان در آزمایشگاه RIML تعریف شده است.
پیشنیاز:
- تسلط کافی بر مباحث یادگیری عمیق
- آشنایی کافی با فریمورکهای یادگیری عمیق نظیر پایتورچ
موارد امتیازی:
- آشنایی با شبکههای عصبی گرافی
- آشنایی با مفاهیم شیمی و خواص مولکولی
- آشنایی با ابزارهایی مانند RdKit
مزایا:
- ریسرچ زیر نظر دکتر رهبان در آزمایشگاه RIML
- یادگیری مفاهیم پیشرفته در شبکههای عصبی گرافی و پیادهسازی آنها
- ارسال پیپر در کنفرانس یا ژورنال مرتبط
برای آشنایی بیشتر با این حوزهی ریسرچ میتوانید مقالات زیر را بررسی نمایید:
https://www.nature.com/articles/s41467-023-41948-6
https://arxiv.org/abs/2206.00133
https://arxiv.org/abs/2106.07971
https://arxiv.org/abs/2106.06130
در صورت تمایل، میتوانید رزومهی خود را به آیدی زیر ارسال کنید:
@aminreza_sefid
سلام به همهی دوستان.
قابل توجه علاقهمندان به پژوهش در حوزهی کشف دارو (پیشبینی خواص مولکولی) با روشهای مبتنی بر شبکههای عصبی عمیق، پروژهای با این عنوان در آزمایشگاه RIML تعریف شده است.
پیشنیاز:
- تسلط کافی بر مباحث یادگیری عمیق
- آشنایی کافی با فریمورکهای یادگیری عمیق نظیر پایتورچ
موارد امتیازی:
- آشنایی با شبکههای عصبی گرافی
- آشنایی با مفاهیم شیمی و خواص مولکولی
- آشنایی با ابزارهایی مانند RdKit
مزایا:
- ریسرچ زیر نظر دکتر رهبان در آزمایشگاه RIML
- یادگیری مفاهیم پیشرفته در شبکههای عصبی گرافی و پیادهسازی آنها
- ارسال پیپر در کنفرانس یا ژورنال مرتبط
برای آشنایی بیشتر با این حوزهی ریسرچ میتوانید مقالات زیر را بررسی نمایید:
https://www.nature.com/articles/s41467-023-41948-6
https://arxiv.org/abs/2206.00133
https://arxiv.org/abs/2106.07971
https://arxiv.org/abs/2106.06130
در صورت تمایل، میتوانید رزومهی خود را به آیدی زیر ارسال کنید:
@aminreza_sefid
Nature
A systematic study of key elements underlying molecular property prediction
Nature Communications - AI has become a crucial tool for drug discovery, but how to properly represent molecules for data-driven property prediction is still an open question. Here the authors...
Adversarial robust learning and its generalization issues
This is a research project in the group of Dr. Rohban (RIML lab) from Sharif University of Technology
Project denoscription:
Despite deep neural networks impressive success in many real-world problems, their instability under test-time adversarial noises is the major issue against their use in safety-critical applications. Therefore, the problem of learning robust deep networks (not only accurate on original samples, but also accurate on adversarially perturbed ones) has become an active area of research.
Training the model based on the adversarial samples in each mini-batch, which is known as “Adversarial training” (AT), has been empirically established as a general and effective approach to remedy this issue. However, real challenges in practice and also theoretical aspects have remained. Especially, we face some critical generalization issues in this new learning paradigm including the larger generalization gap between test and train data in comparison with standard training or the specific phenomenon called catastrophic overfitting. Achieving a better understanding of this topic can be a good help to provide more robust models.
In this project, we aim to analyze generalization in robust learning in a more comprehensive, deep, and detailed way. The project has both theoretical and practical aspects; So having interest, capability, and perseverance in both aspects is needed.
Estimated time for the project is 6 months although it may change depending on the progress and results of the project.
For more information, you can read the following paper:
Zerograd: Costless conscious remedies for catastrophic overfitting in the FGSM adversarial training
Requirements:
- Familiarity with linear algebra fundamentals
- Familiarity with statistics and probability
- Familiarity with ML and deep learning fundamentals
- Hands-on experience in ML and deep learning
- Hands-on experience with PyTorch framework
- Dedicating considerable time and consistency to the project
- Enthusiasm to learn and tackle research problems
Preferred qualifications:
** Familiarity with Jax framework
* Familiarity with adversarial robustness
To apply for the position, please read the suggested paper and send your resume as well as your research interests to z.golgooni@gmail.com
We would be happy to answer any questions you may have through the above email.
#open_position
#research_application
This is a research project in the group of Dr. Rohban (RIML lab) from Sharif University of Technology
Project denoscription:
Despite deep neural networks impressive success in many real-world problems, their instability under test-time adversarial noises is the major issue against their use in safety-critical applications. Therefore, the problem of learning robust deep networks (not only accurate on original samples, but also accurate on adversarially perturbed ones) has become an active area of research.
Training the model based on the adversarial samples in each mini-batch, which is known as “Adversarial training” (AT), has been empirically established as a general and effective approach to remedy this issue. However, real challenges in practice and also theoretical aspects have remained. Especially, we face some critical generalization issues in this new learning paradigm including the larger generalization gap between test and train data in comparison with standard training or the specific phenomenon called catastrophic overfitting. Achieving a better understanding of this topic can be a good help to provide more robust models.
In this project, we aim to analyze generalization in robust learning in a more comprehensive, deep, and detailed way. The project has both theoretical and practical aspects; So having interest, capability, and perseverance in both aspects is needed.
Estimated time for the project is 6 months although it may change depending on the progress and results of the project.
For more information, you can read the following paper:
Zerograd: Costless conscious remedies for catastrophic overfitting in the FGSM adversarial training
Requirements:
- Familiarity with linear algebra fundamentals
- Familiarity with statistics and probability
- Familiarity with ML and deep learning fundamentals
- Hands-on experience in ML and deep learning
- Hands-on experience with PyTorch framework
- Dedicating considerable time and consistency to the project
- Enthusiasm to learn and tackle research problems
Preferred qualifications:
** Familiarity with Jax framework
* Familiarity with adversarial robustness
To apply for the position, please read the suggested paper and send your resume as well as your research interests to z.golgooni@gmail.com
We would be happy to answer any questions you may have through the above email.
#open_position
#research_application