Register for the International Data Analysis Olympiad (IDAO-2021)! The registration continues until March 12.
This year, HSE Faculty of Computer Science and Yandex are holding the Olympiad for the fourth time. This year's Platinum Partner is ‘Otkritie’ Bank. The Olympiad is organised by leading data analysts for their future colleagues, early career analysts and scientists.
The online tour will focus on the search for dark matter - one of the few remaining mysteries of fundamental physics. Dark matter cannot be seen because it does not interact with light and interacts very weakly with ordinary matter. The task of IDAO participants is to build a model that recognises some known observation processes, so that they can be excluded from the search for dark matter.
Details and registration https://idao.world
This year, HSE Faculty of Computer Science and Yandex are holding the Olympiad for the fourth time. This year's Platinum Partner is ‘Otkritie’ Bank. The Olympiad is organised by leading data analysts for their future colleagues, early career analysts and scientists.
The online tour will focus on the search for dark matter - one of the few remaining mysteries of fundamental physics. Dark matter cannot be seen because it does not interact with light and interacts very weakly with ordinary matter. The task of IDAO participants is to build a model that recognises some known observation processes, so that they can be excluded from the search for dark matter.
Details and registration https://idao.world
This media is not supported in your browser
VIEW IN TELEGRAM
Anycost GAN
Anycost GANs for Interactive Image Synthesis and Editing
https://hanlab.mit.edu/projects/anycost-gan/
Github: https://github.com/mit-han-lab/anycost-gan
Paper: https://arxiv.org/abs/2103.03243
@ai_machinelearning_big_data
Anycost GANs for Interactive Image Synthesis and Editing
https://hanlab.mit.edu/projects/anycost-gan/
Github: https://github.com/mit-han-lab/anycost-gan
Paper: https://arxiv.org/abs/2103.03243
@ai_machinelearning_big_data
RTAB-Map
Real-Time Appearance-Based Mapping
http://introlab.github.io/rtabmap/
Github: https://github.com/introlab/rtabmap
Paper: https://arxiv.org/abs/2103.03827v1
@ai_machinelearning_big_data
Real-Time Appearance-Based Mapping
http://introlab.github.io/rtabmap/
Github: https://github.com/introlab/rtabmap
Paper: https://arxiv.org/abs/2103.03827v1
@ai_machinelearning_big_data
GitHub
GitHub - introlab/rtabmap: RTAB-Map library and standalone application
RTAB-Map library and standalone application. Contribute to introlab/rtabmap development by creating an account on GitHub.
Precise Multi-Neuron Abstractions for Neural Network Certification
Github : https://github.com/eth-sri/eran
Paper: https://arxiv.org/abs/2103.03638v1
@ai_machinelearning_big_data
Github : https://github.com/eth-sri/eran
Paper: https://arxiv.org/abs/2103.03638v1
@ai_machinelearning_big_data
👔 Virtual Try-on via Distilling Appearance Flows, CVPR 2021
Github: https://github.com/geyuying/PF-AFN
Paper: https://arxiv.org/abs/2103.04559
@ai_machinelearning_big_data
Github: https://github.com/geyuying/PF-AFN
Paper: https://arxiv.org/abs/2103.04559
@ai_machinelearning_big_data
Train and serve a TensorFlow model with TensorFlow Serving
https://www.tensorflow.org/tfx/tutorials/serving/rest_simple
Code: https://github.com/tensorflow/tfx/blob/master/docs/tutorials/serving/rest_simple.ipynb
Dataset: https://github.com/zalandoresearch/fashion-mnist
@ai_machinelearning_big_data
https://www.tensorflow.org/tfx/tutorials/serving/rest_simple
Code: https://github.com/tensorflow/tfx/blob/master/docs/tutorials/serving/rest_simple.ipynb
Dataset: https://github.com/zalandoresearch/fashion-mnist
@ai_machinelearning_big_data
TensorFlow
Train and serve a TensorFlow model with TensorFlow Serving | TFX
Involution: Inverting the Inherence of Convolution for Visual Recognition
Github: https://github.com/d-li14/involution
Paper: https://arxiv.org/abs/2103.06255
OpenMMLab: https://openmmlab.com/
@ai_machinelearning_big_data
Github: https://github.com/d-li14/involution
Paper: https://arxiv.org/abs/2103.06255
OpenMMLab: https://openmmlab.com/
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
Strawberry Fields is a full-stack Python library for designing, simulating, and optimizing continuous-variable quantum optical circuits.
Github: https://github.com/XanaduAI/strawberryfields
Paper: https://arxiv.org/pdf/2103.05530v1.pdf
@ai_machinelearning_big_data
Github: https://github.com/XanaduAI/strawberryfields
Paper: https://arxiv.org/pdf/2103.05530v1.pdf
@ai_machinelearning_big_data
MagFace: A Universal Representation for Face Recognition and Quality Assessment
Github: https://github.com/IrvingMeng/MagFace
Paper: https://arxiv.org/abs/2103.06627
Code example: https://github.com/IrvingMeng/MagFace/blob/main/inference/examples.ipynb
@ai_machinelearning_big_data
Github: https://github.com/IrvingMeng/MagFace
Paper: https://arxiv.org/abs/2103.06627
Code example: https://github.com/IrvingMeng/MagFace/blob/main/inference/examples.ipynb
@ai_machinelearning_big_data
Develop a Neural Network for Banknote Authentication
https://machinelearningmastery.com/neural-network-for-banknote-authentication/
@ai_machinelearning_big_data
https://machinelearningmastery.com/neural-network-for-banknote-authentication/
@ai_machinelearning_big_data
🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
Github: https://github.com/hkchengrex/MiVOS
Paper: https://arxiv.org/pdf/2103.07941v1.pdf
@ai_machinelearning_big_data
Github: https://github.com/hkchengrex/MiVOS
Paper: https://arxiv.org/pdf/2103.07941v1.pdf
@ai_machinelearning_big_data
This media is not supported in your browser
VIEW IN TELEGRAM
Open Avatarify Photorealistic avatars for video-conferencing apps. Democratized.
Github: https://github.com/alievk/avatarify-python
Demo: https://www.youtube.com/watch?v=Q7LFDT-FRzs&feature=youtu.be&ab_channel=AliAliev
@ai_machinelearning_big_data
Github: https://github.com/alievk/avatarify-python
Demo: https://www.youtube.com/watch?v=Q7LFDT-FRzs&feature=youtu.be&ab_channel=AliAliev
@ai_machinelearning_big_data
Probabilistic two-stage detection
Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network.
Github: https://github.com/xingyizhou/CenterNet2
Paper: https://arxiv.org/abs/2103.07461v1
@ai_machinelearning_big_data
Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network.
Github: https://github.com/xingyizhou/CenterNet2
Paper: https://arxiv.org/abs/2103.07461v1
@ai_machinelearning_big_data
🔷 PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric.
Github: https://github.com/benedekrozemberczki/pytorch_geometric_temporal
Paper: https://dl.acm.org/doi/10.1145/3308560.3316581
Dataset: https://pytorch-geometric-temporal.readthedocs.io/en/latest/notes/introduction.html#discrete-time-datasets
@ai_machinelearning_big_data
Github: https://github.com/benedekrozemberczki/pytorch_geometric_temporal
Paper: https://dl.acm.org/doi/10.1145/3308560.3316581
Dataset: https://pytorch-geometric-temporal.readthedocs.io/en/latest/notes/introduction.html#discrete-time-datasets
@ai_machinelearning_big_data
Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight)
Gitub: https://github.com/zsyzzsoft/co-mod-gan
Paper: https://openreview.net/pdf?id=sSjqmfsk95O
Demo: http://comodgan.ml/
@ai_machinelearning_big_data
Gitub: https://github.com/zsyzzsoft/co-mod-gan
Paper: https://openreview.net/pdf?id=sSjqmfsk95O
Demo: http://comodgan.ml/
@ai_machinelearning_big_data
Contrastive Learning of Musical Representations
Github: https://github.com/spijkervet/CLMR
Paper: https://arxiv.org/abs/2103.09410
@ai_machinelearning_big_data
Github: https://github.com/spijkervet/CLMR
Paper: https://arxiv.org/abs/2103.09410
@ai_machinelearning_big_data
🔬 The Best ML Frameworks & Extensions for Scikit-learn
https://neptune.ai/blog/the-best-ml-framework-extensions-for-scikit-learn
@ai_machinelearning_big_data
https://neptune.ai/blog/the-best-ml-framework-extensions-for-scikit-learn
@ai_machinelearning_big_data
The last article in uplift modeling tutorials by MTS data scientists: “Metrics in uplift modeling”📈
Uplift models are used to promote products and create advertising segments 🤑
📗 Habr: https://habr.com/ru/company/ru_mts/blog/538934/
💻 Code: https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/uplift_metrics_tutorial.ipynb
Uplift models are used to promote products and create advertising segments 🤑
📗 Habr: https://habr.com/ru/company/ru_mts/blog/538934/
💻 Code: https://nbviewer.jupyter.org/github/maks-sh/scikit-uplift/blob/master/notebooks/uplift_metrics_tutorial.ipynb
Хабр
Туториал по uplift моделированию: метрики. Часть 3
В предыдущих туториалах ( часть 1 , часть 2 ) мы изучали методы, моделирующие uplift. Это величина, которая оценивает размер влияния на клиента, если мы взаимодействуем с ним. Например, отправляем смс...
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
The GENRE (Generarive ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch.
Github: https://github.com/facebookresearch/GENRE
Paper: https://arxiv.org/abs/2103.12528v1
Dataset: https://github.com/facebookresearch/GENRE/blob/main/noscripts/download_all_datasets.sh
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/GENRE
Paper: https://arxiv.org/abs/2103.12528v1
Dataset: https://github.com/facebookresearch/GENRE/blob/main/noscripts/download_all_datasets.sh
@ai_machinelearning_big_data
Каждый день мы загружаем и передаем все больше контента. Нагрузка на базовые станции операторов растет, но вместе с ней растет и качество связи. Как это получается? И какую роль в этом процессе играет big data?
Ответы найдете в видео «Как нейросети помогают оставаться на связи», где Тимур и Вика, датасайентисты из МегаФона, рассказывают, почему модернизация базовых станций – это задача из области data science, как работает модель, на основании рекомендаций которой принимаются решения о необходимости «прокачки» той или иной вышки, и остается ли в этом процессе место для человека.
Спойлер: место для человека остается. Например, в МегаФоне в команду по работе с большими данными ищут Team Lead, Senior data scientist, инженера SQL и других специалистов.
Ответы найдете в видео «Как нейросети помогают оставаться на связи», где Тимур и Вика, датасайентисты из МегаФона, рассказывают, почему модернизация базовых станций – это задача из области data science, как работает модель, на основании рекомендаций которой принимаются решения о необходимости «прокачки» той или иной вышки, и остается ли в этом процессе место для человека.
Спойлер: место для человека остается. Например, в МегаФоне в команду по работе с большими данными ищут Team Lead, Senior data scientist, инженера SQL и других специалистов.
YouTube
Нейросети помогают оставаться на связи // Data Science и модернизация базовых станций в МегаФоне 12+
Задумывались ли вы, почему при колоссальном росте объема передаваемой информации, проблемы со связью – редкость? Почему вы спокойно можете смотреть это видео в метро, на улице, дома, по дороге на дачу или находясь на учебе, а параллельно писать другу в социальных…
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization
Github: https://github.com/czczup/URST
Paper: https://arxiv.org/abs/2103.11784
Dataset: https://cocodataset.org/#download
@ai_machinelearning_big_data
Github: https://github.com/czczup/URST
Paper: https://arxiv.org/abs/2103.11784
Dataset: https://cocodataset.org/#download
@ai_machinelearning_big_data