🔹 Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth Uncertainty Learning
Github: https://github.com/facebookresearch/Mask2Former
Installation: https://github.com/facebookresearch/Mask2Former/blob/main/INSTALL.md
Paper: https://arxiv.org/abs/2112.01527v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/Mask2Former
Installation: https://github.com/facebookresearch/Mask2Former/blob/main/INSTALL.md
Paper: https://arxiv.org/abs/2112.01527v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
👍2❤1
This media is not supported in your browser
VIEW IN TELEGRAM
🔗 DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting
Github: https://github.com/raoyongming/denseclip
Paper: https://arxiv.org/abs/2112.01518v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Github: https://github.com/raoyongming/denseclip
Paper: https://arxiv.org/abs/2112.01518v1
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
👍1
🦎 → 🐍 NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Github: https://github.com/GEM-benchmark/NL-Augmenter
Paper: https://arxiv.org/abs/2112.02721v1
Dataset: https://paperswithcode.com/dataset/sst
@ai_machinelearning_big_data
Github: https://github.com/GEM-benchmark/NL-Augmenter
Paper: https://arxiv.org/abs/2112.02721v1
Dataset: https://paperswithcode.com/dataset/sst
@ai_machinelearning_big_data
👍1
Federated Learning: Collaborative Machine Learning with a Tutorial on How to Get Started
https://www.kdnuggets.com/2021/12/federated-learning-collaborative-machine-learning-tutorial-get-started.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2021/12/federated-learning-collaborative-machine-learning-tutorial-get-started.html
@ai_machinelearning_big_data
KDnuggets
Federated Learning: Collaborative Machine Learning with a Tutorial on How to Get Started
Read on to learn more about the intricacies of federated learning and what it can do for machine learning on sensitive data.
💉 Semi-supervised-learning-for-medical-image-segmentation.
Github: https://github.com/HiLab-git/SSL4MIS
Paper: https://arxiv.org/abs/2112.04894v1
@ai_machinelearning_big_data
Github: https://github.com/HiLab-git/SSL4MIS
Paper: https://arxiv.org/abs/2112.04894v1
@ai_machinelearning_big_data
🎓 GAN-Supervised Dense Visual Alignment
Github: https://github.com/wpeebles/gangealing
Project: https://www.wpeebles.com/gangealing
Paper: https://arxiv.org/abs/2112.04894v1
Dataset: https://paperswithcode.com/dataset/celeba
@ai_machinelearning_big_data
Github: https://github.com/wpeebles/gangealing
Project: https://www.wpeebles.com/gangealing
Paper: https://arxiv.org/abs/2112.04894v1
Dataset: https://paperswithcode.com/dataset/celeba
@ai_machinelearning_big_data
👍2
Бесплатный онлайн-учебник по ML и Data Science
Для начинающих ML-специалистов, аналитиков и разработчиков появилось отличное учебное онлайн-пособие, которое систематизирует актуальную базовую информацию о Machine Learning и Data Science и помогает погрузиться в тему.
Авторы учебника — специалисты Школы анализа данных Яндекса — проводят от основ машинного обучения и знакомства с ключевыми для ML разделами математики до примеров реального применения их на практике. Учебник выложен в свободный доступ, и сейчас в нем открыты две главы: «Классические методы обучения с учителем» и «Оценка качества моделей». В ближайшее время появятся и новые разделы — авторы обещают регулярно обновлять информацию вслед за развитием сферы ML. Добавляйте в закладки!
Для начинающих ML-специалистов, аналитиков и разработчиков появилось отличное учебное онлайн-пособие, которое систематизирует актуальную базовую информацию о Machine Learning и Data Science и помогает погрузиться в тему.
Авторы учебника — специалисты Школы анализа данных Яндекса — проводят от основ машинного обучения и знакомства с ключевыми для ML разделами математики до примеров реального применения их на практике. Учебник выложен в свободный доступ, и сейчас в нем открыты две главы: «Классические методы обучения с учителем» и «Оценка качества моделей». В ближайшее время появятся и новые разделы — авторы обещают регулярно обновлять информацию вслед за развитием сферы ML. Добавляйте в закладки!
🔥6👎1
🕷 Bayesian Active Learning (BaaL)
Github: https://github.com/ElementAI/baal
Documentation: https://baal.readthedocs.io.
Paper: https://arxiv.org/abs/2112.06586v1
Blog: https://www.elementai.com/news/2019/element-ai-makes-its-bayesian-active-learning-library-open-source
@ai_machinelearning_big_data
Github: https://github.com/ElementAI/baal
Documentation: https://baal.readthedocs.io.
Paper: https://arxiv.org/abs/2112.06586v1
Blog: https://www.elementai.com/news/2019/element-ai-makes-its-bayesian-active-learning-library-open-source
@ai_machinelearning_big_data
👍5
📹 Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos
Github: https://github.com/lajlksdf/vtl
Paper: https://arxiv.org/abs/2112.08117v1
Dataset: https://paperswithcode.com/dataset/dftl
@ai_machinelearning_big_data
Github: https://github.com/lajlksdf/vtl
Paper: https://arxiv.org/abs/2112.08117v1
Dataset: https://paperswithcode.com/dataset/dftl
@ai_machinelearning_big_data
👍4
📑 Extreme Zero-Shot Learning for Extreme Text Classification
Github: https://github.com/amzn/pecos
Paper: https://arxiv.org/abs/2112.08652v1
@ai_machinelearning_big_data
Github: https://github.com/amzn/pecos
Paper: https://arxiv.org/abs/2112.08652v1
@ai_machinelearning_big_data
👍2
This media is not supported in your browser
VIEW IN TELEGRAM
💡 Ensembling Off-the-shelf Models for GAN Training
Github: https://github.com/nupurkmr9/vision-aided-gan
Paper: https://arxiv.org/pdf/2112.09130v1.pdf
Dataset: https://paperswithcode.com/dataset/lsun
@ai_machinelearning_big_data
Github: https://github.com/nupurkmr9/vision-aided-gan
Paper: https://arxiv.org/pdf/2112.09130v1.pdf
Dataset: https://paperswithcode.com/dataset/lsun
@ai_machinelearning_big_data
🔥1
🌠 NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems
NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and machine learning techniques.
Github: https://github.com/netket/netket
Paper: https://arxiv.org/pdf/2112.10526v1.pdf
Homepage: https://www.netket.org
Documentation: https://www.netket.org/documentation
Tutorials: https://www.netket.org/tutorials
@ai_machinelearning_big_data
NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and machine learning techniques.
Github: https://github.com/netket/netket
Paper: https://arxiv.org/pdf/2112.10526v1.pdf
Homepage: https://www.netket.org
Documentation: https://www.netket.org/documentation
Tutorials: https://www.netket.org/tutorials
@ai_machinelearning_big_data
👍3
📐 RepMLPNet: Hierarchical Vision MLP with Re-parameterized Locality (PyTorch)
Github: https://github.com/DingXiaoH/RepMLP
Pre-trained model: https://drive.google.com/drive/folders/1eDFunxOQ67MvBBmJ4Bw01TFh2YVNRrg2?usp=sharing
Paper: https://arxiv.org/abs/2112.11081v1
Task: https://paperswithcode.com/task/semantic-segmentation
@ai_machinelearning_big_data
Github: https://github.com/DingXiaoH/RepMLP
Pre-trained model: https://drive.google.com/drive/folders/1eDFunxOQ67MvBBmJ4Bw01TFh2YVNRrg2?usp=sharing
Paper: https://arxiv.org/abs/2112.11081v1
Task: https://paperswithcode.com/task/semantic-segmentation
@ai_machinelearning_big_data
👍2
📑 GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
Github: https://github.com/openai/glide-text2im
Notebooks: https://github.com/openai/glide-text2im/blob/main/notebooks
Paper: https://arxiv.org/abs/2112.10741
Task: https://paperswithcode.com/task/image-generation
@ai_machinelearning_big_data
Github: https://github.com/openai/glide-text2im
Notebooks: https://github.com/openai/glide-text2im/blob/main/notebooks
Paper: https://arxiv.org/abs/2112.10741
Task: https://paperswithcode.com/task/image-generation
@ai_machinelearning_big_data
👍4
📹 MSeg: A Composite Dataset for Multi-domain Semantic Segmentation
Github: https://github.com/mseg-dataset/mseg-api
Paper: https://arxiv.org/abs/2112.13762
Dataset: https://paperswithcode.com/dataset/sun-rgb-d
@ai_machinelearning_big_data
Github: https://github.com/mseg-dataset/mseg-api
Paper: https://arxiv.org/abs/2112.13762
Dataset: https://paperswithcode.com/dataset/sun-rgb-d
@ai_machinelearning_big_data
👍2
📏 AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition
Github: https://github.com/leaplabthu/adafocusv2
Paper: https://arxiv.org/abs/2112.14238v1
Tasks: https://paperswithcode.com/task/video-recognition
@ai_machinelearning_big_data
Github: https://github.com/leaplabthu/adafocusv2
Paper: https://arxiv.org/abs/2112.14238v1
Tasks: https://paperswithcode.com/task/video-recognition
@ai_machinelearning_big_data
🤩3👍1🔥1
🔼 PyramidTNT: Improved Transformer-in-Transformer Baselines with Pyramid Architecture
PyramidTNT achieves better performances than the previous state-of-the-art vision transformers such as Swin Transformer
Github: https://github.com/huawei-noah/CV-backbones
Paper: https://arxiv.org/abs/2201.00978v1
GhostNet: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch
@ai_machinelearning_big_data
PyramidTNT achieves better performances than the previous state-of-the-art vision transformers such as Swin Transformer
Github: https://github.com/huawei-noah/CV-backbones
Paper: https://arxiv.org/abs/2201.00978v1
GhostNet: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch
@ai_machinelearning_big_data
👍4
This media is not supported in your browser
VIEW IN TELEGRAM
🗣 AV-HuBERT (Audio-Visual Hidden Unit BERT)
AV-HuBERT is a self-supervised representation learning framework for audio-visual speech.
Github: https://github.com/facebookresearch/av_hubert
Facebook AI: https://ai.facebook.com/blog/ai-that-understands-speech-by-looking-as-well-as-hearing/
Paper: https://arxiv.org/abs/2201.02184
@ai_machinelearning_big_data
AV-HuBERT is a self-supervised representation learning framework for audio-visual speech.
Github: https://github.com/facebookresearch/av_hubert
Facebook AI: https://ai.facebook.com/blog/ai-that-understands-speech-by-looking-as-well-as-hearing/
Paper: https://arxiv.org/abs/2201.02184
@ai_machinelearning_big_data
👍6🔥5
This media is not supported in your browser
VIEW IN TELEGRAM
🐭 pymdp: A Python library for active inference in discrete state spaces
Github: https://github.com/infer-actively/pymdp
Paper: https://arxiv.org/abs/2201.03904v1
Docs: https://pymdp-rtd.readthedocs.io/
Tasks: https://paperswithcode.com/task/bayesian-inference
@ai_machinelearning_big_data
Github: https://github.com/infer-actively/pymdp
Paper: https://arxiv.org/abs/2201.03904v1
Docs: https://pymdp-rtd.readthedocs.io/
Tasks: https://paperswithcode.com/task/bayesian-inference
@ai_machinelearning_big_data
🔥4❤2👍2🤩1
✨ Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning
Github: https://github.com/sense-x/uniformer
Paper: https://arxiv.org/abs/2201.04676v1
Tasks: https://paperswithcode.com/dataset/kinetics-600
@ai_machinelearning_big_data
Github: https://github.com/sense-x/uniformer
Paper: https://arxiv.org/abs/2201.04676v1
Tasks: https://paperswithcode.com/dataset/kinetics-600
@ai_machinelearning_big_data
👍7🔥6