Machinelearning – Telegram
383K subscribers
4.46K photos
862 videos
17 files
4.9K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
👀 Sockeye

Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch.

Code: https://github.com/awslabs/sockeye

Tutorial: https://github.com/awslabs/sockeye/blob/main/docs/tutorials/wmt_large.md

Paper: https://arxiv.org/abs/2205.06618v1

@ai_machinelearning_big_data
👍132🔥2
🖇 A graph-transformer for whole slide image classification

Graph-Transformer (GT) that fuses a graph-based representation of an WSI and a vision transformer for processing pathology images.

Github: https://github.com/vkola-lab/tmi2022

Paper: https://arxiv.org/abs/2205.09671v1

Dataset: https://paperswithcode.com/dataset/imagenet
👍11👎3
RankGen - Improving Text Generation with Large Ranking Models

RankGen is a 1.2 billion encoder model which maps prefixes and generations from any language model (in continutation to the prefix) to a shared vector space.

Github: https://github.com/martiansideofthemoon/rankgen

Paper: https://arxiv.org/abs/2205.09726

Dataset: https://paperswithcode.com/dataset/imagenet

@ai_machinelearning_big_data
👍9
This media is not supported in your browser
VIEW IN TELEGRAM
☠️ PYSKL: Towards Good Practices for Skeleton Action Recognition

Skeleton-based action recognition

Github: https://github.com/kennymckormick/pyskl

Paper: https://arxiv.org/abs/2205.09443v1

Dataset: https://paperswithcode.com/dataset/finegym

@ai_machinelearning_big_data
👍27😱2
📝 Automated Crossword Solving

Pretrained models, precomputed FAISS embeddings, and a crossword clue-answer dataset.

Github: https://github.com/albertkx/berkeley-crossword-solver

Paper: https://arxiv.org/abs/2205.09665v1

Dataset: https://www.xwordinfo.com/JSON/

@ai_machinelearning_big_data
👍133
🦄 Imagen unprecedented photorealism × deep level of language understanding From Google

Home: https://gweb-research-imagen.appspot.com/

Paper: https://gweb-research-imagen.appspot.com/paper.pdf

@ai_machinelearning_big_data
👍155🔥5
💻 BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework

Github: https://github.com/adlab-autodrive/bevfusion

Paper: https://arxiv.org/abs/2205.13790v1

Dataset: https://paperswithcode.com/dataset/kitti
👍7
📍 Perturbation Augmentation for Fairer NLP

Responsible NLP projects from Meta AI.

Github: https://github.com/facebookresearch/responsiblenlp

Paper: https://arxiv.org/abs/2205.12586v1

Dataset: https://paperswithcode.com/dataset/glue

@ai_machinelearning_big_data
👍18👎1
🟢 Green Hierarchical Vision Transformer for Masked Image Modeling

Github: https://github.com/layneh/greenmim

Paper: https://arxiv.org/abs/2205.13515v1

Dataset: https://paperswithcode.com/dataset/coco

@ai_machinelearning_big_data
👍13
🔥 210 Machine Learning Projects (with Source Code) That You Can Build Today

Projects lists
👍15👎8😁1
✈️ HIRL: A General Framework for Hierarchical Image Representation Learning

Github: https://github.com/hirl-team/hirl

Paper: https://arxiv.org/abs/2205.13159v1

Dataset: https://paperswithcode.com/dataset/places205

@ai_machinelearning_big_data
👍15👎1
🔝 PanopticDepth: A Unified Framework for Depth-aware Panoptic Segmentation

Github: https://github.com/naiyugao/panopticdepth

Paper: http://arxiv.org/abs/2206.00468

Dataset: https://paperswithcode.com/dataset/cityscapes

@ai_machinelearning_big_data
👍10
🦠 MaSIF- Molecular Surface Interaction Fingerprints: Geometric deep learning to decipher patterns in protein molecular surfaces.

MaSIF is a proof-of-concept method to decipher patterns in protein surfaces important for specific biomolecular interactions.

Github: https://github.com/LPDI-EPFL/masif

Paper: https://www.nature.com/articles/s41592-019-0666-6

Data: https://github.com/LPDI-EPFL/masif#MaSIF-data-preparation

@ai_machinelearning_big_data
👍15🔥3
🔊A Python library for audio feature extraction, classification, segmentation and applications.

Code: PyAudioAnalysis
👍11👎2🔥1