Machinelearning – Telegram
383K subscribers
4.46K photos
862 videos
17 files
4.9K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🧍‍♂ PeopleSansPeople: A Synthetic Data Generator for Human-Centric Computer Vision

Human-centric privacy-preserving synthetic data generator with highly parametrized domain randomization.

Github: https://github.com/unity-technologies/peoplesanspeople

Paper: https://arxiv.org/abs/2207.05025v1

Demo Video: https://www.youtube.com/watch?v=mQ_DUdB70dc

@ai_machinelearning_big_data
👍13
🚀 Dynamic Low-Resolution Distillation for Cost-Efficient End-to-End Text Spotting

Github: https://github.com/hikopensource/davar-lab-ocr

Paper: https://arxiv.org/abs/2207.06694v1

Dataset: https://paperswithcode.com/dataset/total-text

@ai_machinelearning_big_data
👍84
Language Modelling with Pixels

PIXEL is a language model that operates on text rendered as images, fully removing the need for a fixed vocabulary.

Github: https://github.com/xplip/pixel

Paper: https://arxiv.org/abs/2207.06991v1

Dataset: https://paperswithcode.com/dataset/glue

Pretrained: https://huggingface.co/Team-PIXEL/pixel-base

@ai_machinelearning_big_data
👍20😢2
⚡️ CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS

Github: https://github.com/walkerning/aw_nas

Paper: https://arxiv.org/abs/2207.07868v1

Dataset: https://paperswithcode.com/dataset/nas-bench-201

@ai_machinelearning_big_data
👍15😢1
HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation

Github: https://github.com/amirhossein-kz/hiformer

Paper: https://arxiv.org/abs/2207.08518v1

Tasks: https://paperswithcode.com/task/medical-image-segmentation

@ai_machinelearning_big_data
👍11🎉1
📝 Automated Crossword Solving

Pretrained models, precomputed FAISS embeddings, and a crossword clue-answer dataset.

Github: https://github.com/albertkx/berkeley-crossword-solver

Paper: https://arxiv.org/abs/2205.09665v1

Dataset: https://www.xwordinfo.com/JSON/
👍16😁3
Tip-Adapter: Training-free Adaption of CLIP for Few-shot Classification

Tip-Adapter is a training-free adaption method for CLIP to conduct few-shot classification.

Github: https://github.com/gaopengcuhk/tip-adapter

Paper: https://arxiv.org/abs/2207.09519v1

Dataset: https://paperswithcode.com/dataset/oxford-102-flower

@ai_machinelearning_big_data
👍101
🧿 Generative Multiplane Images: Making a 2D GAN 3D-Aware

What is really needed to make an existing 2D GAN 3D-aware? To answer this question, we modify a classical GAN, i.e., StyleGANv2, as little as possible. We find that only two modifications are absolutely necessary: 1) a multiplane image style generator branch which produces a set of alpha maps conditioned on their depth; 2) a pose-conditioned discriminator.

Github: https://github.com/apple/ml-gmpi

Paper: https://arxiv.org/abs/2207.10642v1

Dataset: https://paperswithcode.com/dataset/metfaces

Project: https://xiaoming-zhao.github.io/projects/gmpi/

Pretrained checkpoints: https://drive.google.com/drive/folders/1MEIjen0XOIW-kxEMfBUONnKYrkRATSR_

@ai_machinelearning_big_data
👍14
👍14🔥1
🏵 Weakly Supervised Object Localization via Transformer with Implicit Spatial Calibration

learnable parameter to dynamically adjust the semantic correlations and spatial context intensities for effective information propagation.

Github: https://github.com/164140757/scm

Paper: https://arxiv.org/abs/2207.10447v1

Dataset: https://paperswithcode.com/dataset/cub-200-2011

@ai_machinelearning_big_data
👍9
🌟 SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

Simple but very effective attention module for Convolutional Neural Networks (ConvNets).

Github: https://github.com/ZjjConan/SimAM

Paper: http://proceedings.mlr.press/v139/yang21o.html

Dataset: https://paperswithcode.com/dataset/cifar-10

Google Drive: https://drive.google.com/drive/folders/1rRT0UCPeRLPdTCJvv43hvAnGnS49nIWn?usp=sharing

@ai_machinelearning_big_data
👍16🔥2