This media is not supported in your browser
VIEW IN TELEGRAM
👱♂️ Multiface: A Dataset for Neural Face Rendering
Github: https://github.com/facebookresearch/multiface
Paper: https://arxiv.org/abs/2207.11243v1
Dataset: https://paperswithcode.com/dataset/facewarehouse
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/multiface
Paper: https://arxiv.org/abs/2207.11243v1
Dataset: https://paperswithcode.com/dataset/facewarehouse
@ai_machinelearning_big_data
🔥17👍7🥰1
☀️ MAPIE - Model Agnostic Prediction Interval Estimator
MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourite scikit-learn-compatible model for single-output regression or multi-class classification settings.
Github: https://github.com/scikit-learn-contrib/mapie
Paper: https://arxiv.org/abs/2207.12274v1
Docs: https://mapie.readthedocs.io/en/latest/
@ai_machinelearning_big_data
MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourite scikit-learn-compatible model for single-output regression or multi-class classification settings.
Github: https://github.com/scikit-learn-contrib/mapie
Paper: https://arxiv.org/abs/2207.12274v1
Docs: https://mapie.readthedocs.io/en/latest/
@ai_machinelearning_big_data
👍13
🦾 Learning Visual Representation from Modality-Shared Contrastive Language-Image Pre-training
Github: https://github.com/hxyou/msclip
Paper: https://arxiv.org/abs/2207.12661v1
Dataset: https://paperswithcode.com/dataset/sst
@ai_machinelearning_big_data
Github: https://github.com/hxyou/msclip
Paper: https://arxiv.org/abs/2207.12661v1
Dataset: https://paperswithcode.com/dataset/sst
@ai_machinelearning_big_data
👍13
🦠 Learning Protein Representations via Complete 3D Graph Networks
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
@ai_machinelearning_big_data
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
@ai_machinelearning_big_data
👍9🔥3
🔘 ALBench: A Framework for Evaluating Active Learning in Object Detection
An active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Github: https://github.com/industryessentials/ymir
Paper: https://arxiv.org/abs/2207.13339v1
Projects: https://github.com/IndustryEssentials/ymir/projects
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
An active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Github: https://github.com/industryessentials/ymir
Paper: https://arxiv.org/abs/2207.13339v1
Projects: https://github.com/IndustryEssentials/ymir/projects
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
👍8🔥5
🔥📐 Rewriting Geometric Rules of a GAN
Method which allows edit a GAN model to synthesize many unseen objects with the desired shape
Github: https://github.com/peterwang512/ganwarping
Paper: https://arxiv.org/abs/2207.14288v1
Project: https://peterwang512.github.io/GANWarping/
Dataset: https://paperswithcode.com/dataset/ffhq
Video: https://www.youtube.com/watch?v=2m7_rbsO6Hk
@ai_machinelearning_big_data
Method which allows edit a GAN model to synthesize many unseen objects with the desired shape
Github: https://github.com/peterwang512/ganwarping
Paper: https://arxiv.org/abs/2207.14288v1
Project: https://peterwang512.github.io/GANWarping/
Dataset: https://paperswithcode.com/dataset/ffhq
Video: https://www.youtube.com/watch?v=2m7_rbsO6Hk
@ai_machinelearning_big_data
🔥8👍5❤2
👨 Deep Deformable 3D Caricature with Learned Shape Control (DD3C)
Github: https://github.com/ycjungsubhuman/deepdeformable3dcaricatures
Paper: https://arxiv.org/abs/2207.14593v1
Project: https://ycjungsubhuman.github.io/DeepDeformable3DCaricatures
Dataset: https://paperswithcode.com/dataset/facewarehouse
Video: https://youtu.be/WLMPEaK6E4M
@ai_machinelearning_big_data
Github: https://github.com/ycjungsubhuman/deepdeformable3dcaricatures
Paper: https://arxiv.org/abs/2207.14593v1
Project: https://ycjungsubhuman.github.io/DeepDeformable3DCaricatures
Dataset: https://paperswithcode.com/dataset/facewarehouse
Video: https://youtu.be/WLMPEaK6E4M
@ai_machinelearning_big_data
👍12🔥1
🔥 CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation
Github: https://github.com/huawei-noah/noah-research/tree/master/CLIFF
Paper: https://arxiv.org/abs/2208.00571v1
Pretrained checkpoints : https://drive.google.com/drive/folders/1EmSZwaDULhT9m1VvH7YOpCXwBWgYrgwP
Dataset: https://paperswithcode.com/dataset/human3-6m
@ai_machinelearning_big_data
Github: https://github.com/huawei-noah/noah-research/tree/master/CLIFF
Paper: https://arxiv.org/abs/2208.00571v1
Pretrained checkpoints : https://drive.google.com/drive/folders/1EmSZwaDULhT9m1VvH7YOpCXwBWgYrgwP
Dataset: https://paperswithcode.com/dataset/human3-6m
@ai_machinelearning_big_data
👍14🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
💬 Expanding Language-Image Pretrained Models for General Video Recognition by Microsoft.
Video-specific prompting scheme, which leverages video content information for generating discriminative textual prompts.
Github: https://github.com/microsoft/VideoX/tree/master/X-CLIP
Paper: https://arxiv.org/abs/2208.02816v1
Dataset: https://paperswithcode.com/dataset/ucf101
@ai_machinelearning_big_data
Video-specific prompting scheme, which leverages video content information for generating discriminative textual prompts.
Github: https://github.com/microsoft/VideoX/tree/master/X-CLIP
Paper: https://arxiv.org/abs/2208.02816v1
Dataset: https://paperswithcode.com/dataset/ucf101
@ai_machinelearning_big_data
👍8❤3🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
➡️ Prompt Tuning for Generative Multimodal Pretrained Models
Github: https://github.com/ofa-sys/ofa
Paper: https://arxiv.org/abs/2208.02532v1
Dataset: https://paperswithcode.com/dataset/snli-ve
Demo: https://huggingface.co/spaces/OFA-Sys/OFA-Generic_Interface
@ai_machinelearning_big_data
Github: https://github.com/ofa-sys/ofa
Paper: https://arxiv.org/abs/2208.02532v1
Dataset: https://paperswithcode.com/dataset/snli-ve
Demo: https://huggingface.co/spaces/OFA-Sys/OFA-Generic_Interface
@ai_machinelearning_big_data
🔥14🎉3👍2
🚀 @machinelearning_interview - в Канале собраны все возможные вопросы и ответы с собеседований по Аналитике данных и Машинному обучению. Канал от Data Analytics.
Материалы канала реально помогут подготовиться к data science собеседованию.
👉Перейти
Материалы канала реально помогут подготовиться к data science собеседованию.
👉Перейти
👍11❤1
💻 P2P: Tuning Pre-trained Image Models for Point Cloud Analysis with Point-to-Pixel Prompting
Github: https://github.com/wangzy22/P2P
Paper: https://arxiv.org/abs/2208.02812v1
Dataset: https://paperswithcode.com/dataset/imagenet
Model: https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip
@ai_machinelearning_big_data
Github: https://github.com/wangzy22/P2P
Paper: https://arxiv.org/abs/2208.02812v1
Dataset: https://paperswithcode.com/dataset/imagenet
Model: https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip
@ai_machinelearning_big_data
👍11🔥2
🧩 Per-Clip Video Object Segmentation
Progressive matching mechanism for efficient information-passing within a clip.
Github: https://github.com/pkyong95/PCVOS
Paper: https://arxiv.org/abs/2208.01924v1
Dataset: https://paperswithcode.com/dataset/davis
Video: https://youtu.be/6QATHDwrUx0
@ai_machinelearning_big_data
Progressive matching mechanism for efficient information-passing within a clip.
Github: https://github.com/pkyong95/PCVOS
Paper: https://arxiv.org/abs/2208.01924v1
Dataset: https://paperswithcode.com/dataset/davis
Video: https://youtu.be/6QATHDwrUx0
@ai_machinelearning_big_data
👍13
Эволюция машинного обучения и проблема «черного ящика»
Какие бенчмарки используются в ML?
Благодаря чему произошел прорыв в технологиях машинного обучения?
Как метод LIME помогает интерпретировать алгоритмы ИИ?
Почему нейронки по-прежнему работают не так, как хотелось бы ученым?
Ученые Yandex Research рассказали, как они исследуют логику нейросетей и почему людям до сих пор сложно прочитать их «мысли».
Какие бенчмарки используются в ML?
Благодаря чему произошел прорыв в технологиях машинного обучения?
Как метод LIME помогает интерпретировать алгоритмы ИИ?
Почему нейронки по-прежнему работают не так, как хотелось бы ученым?
Ученые Yandex Research рассказали, как они исследуют логику нейросетей и почему людям до сих пор сложно прочитать их «мысли».
nplus1.ru
Внимание, черный ящик
Как и зачем исследовать логику нейросетей
👍21🔥5❤1
🧠 Free AI for Beginners Course
Artificial Intelligence for Beginners
MindMap
Denoscription
@ai_machinelearning_big_data
Artificial Intelligence for Beginners
MindMap
Denoscription
@ai_machinelearning_big_data
🔥16❤5👍3😢2
🐚 Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers
Github: https://github.com/lkeab/BCNet
Paper: https://arxiv.org/abs/2208.04438v1
Dataset: https://paperswithcode.com/dataset/bdd100k
Video: https://www.youtube.com/watch?v=iHlGJppJGiQ
@ai_machinelearning_big_data
Github: https://github.com/lkeab/BCNet
Paper: https://arxiv.org/abs/2208.04438v1
Dataset: https://paperswithcode.com/dataset/bdd100k
Video: https://www.youtube.com/watch?v=iHlGJppJGiQ
@ai_machinelearning_big_data
👍8🔥2