Machinelearning – Telegram
383K subscribers
4.45K photos
856 videos
17 files
4.88K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🚀 Universal Guidance for Diffusion Models

Algorithm successfully generates quality images with guidance functions including segmentation, face recognition, object detection, and classifier signals.

Универсальный алгоритм, который позволяет управлять диффузионными моделями без необходимости повторного обучения каких-либо компонентов.

🖥 Github: https://github.com/arpitbansal297/universal-guided-diffusion

💨 Paper: https://arxiv.org/abs/2302.07121v1

🗳Dataset: https://paperswithcode.com/dataset/imagenet

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍104🔥4
↪️ Zero-shot image-to-text generation with BLIP-2

The model bridges the gap between vision and natural language modalities by adding a transformer between pre-trained models.

BLIP-2 — это новая модель визуального языка, которую можно использовать для нескольких задач преобразования изображения в текст. Это эффективный подход, который можно применять для получения качественных промптов.

💨 Hugging Face: https://huggingface.co/blog/blip-2

💻 Demo: https://huggingface.co/spaces/Salesforce/BLIP2

🖥 Github: https://github.com/salesforce/LAVIS

⭐️Paper: https://arxiv.org/abs/2301.12597

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥42
🌐 Как организовать работу над ML-экспериментами с помощью MLflow

MLOps — набор практик и инструментов, которые помогают стандартизировать и повысить эффективность процессов работы с машинным обучением. Эксперты VK Cloud и Karpov.Courses выпустили на Хабре полезную статью, где показали последовательность действий по выстраиванию MLOps-подхода в облаке с помощью JupyterHub и MLflow. Подробнее тут.

ai_machinelearning_big_data
👍8
T2I-Adapter

Network that can provide extra guidance to pre-trained text-to-image models while freezing the original large text-to-image models.

T2I-Adapter набор aдаптеров для диффузионных моделей(~ 70 млн параметров ).Подходит для широкого спектра задач text-to-image, генерация скетчей, редактирование изображений по тексту, объединение нескольких адаптеров вместе и многое другое.


🖥 Github: https://github.com/TencentARC/T2I-Adapter

🤗 Hugging Face: https://huggingface.co/TencentARC/T2I-Adapter

⭐️Paper: https://arxiv.org/abs/2302.08453v1

💻 Dataset: https://paperswithcode.com/dataset/coco

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7🔥31
This media is not supported in your browser
VIEW IN TELEGRAM
3D-aware Conditional Image Synthesis (pix2pix3D)

Model synthesizes a 3d photo from different viewpoints.

3D генеративная модель для управляемого синтеза фотореалистичных изображений.

🖥 Github: https://github.com/dunbar12138/pix2pix3D

⭐️ Project: https://huggingface.co/TencentARC/T2I-Adapter

⭐️Paper: https://arxiv.org/abs/2302.08509

💻 Dataset: https://paperswithcode.com/dataset/coco

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🥰21
👁 EdgeYOLO: An Edge-Real-Time Object Detector

EdgeYOLO reaches 34FPS with 50.6% AP in COCO2017 dataset and 25.9% AP in VisDrone2019 (image input size is 640x640, batch=16, post-process included).

Новый детектор обнаружения небольших объектов с высокой точностью, не требующий больших вычислительных мощностей.

🖥 Github: https://github.com/lsh9832/edgeyolo

⭐️Paper: https://arxiv.org/abs/2302.07483v1

⭐️ Weights: https://github.com/LSH9832/edgeyolo/releases/tag/v0.0.0

💻 Dataset: https://paperswithcode.com/dataset/visdrone

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥20👍72😁1🤣1
🚀 Slapo: A Schedule Language for Large Model Training

Slapo is a schedule language for progressive optimization of large deep learning model training.

Slapo позволяет использовать набор примитивов на PyTorch, запуская их по расписанию, для оптимизации обучения без изменения самой модели.

🚀 Мощная оптимизация.

pip3 install slapo

🖥 Github: https://github.com/awslabs/slapo

⭐️Paper: https://arxiv.org/abs/2302.08005v1

💻 Docs: https://awslabs.github.io/slapo/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥5🥰2🤔1🥱1
This media is not supported in your browser
VIEW IN TELEGRAM
💠 MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation

MultiDiffusion - модель, позволяющая создавать любые изображения, используя предварительно обученную модель диффузии текста в изображение, без дополнительного обучения и настройки.

⭐️ Project: https://multidiffusion.github.io/

🖥 Github: https://github.com/omerbt/MultiDiffusion

⭐️Paper: https://arxiv.org/abs/2302.08113v1

💻 Dataset: https://paperswithcode.com/dataset/coco

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥54
Media is too big
VIEW IN TELEGRAM
🔍 Planar Object Tracking via Weighted Optical Flow

Method for planar object 8 degrees-of-freedom pose.

WOFT - новый невероятно точный метод отслеживания объектов.


⭐️ Project: https://cmp.felk.cvut.cz/~serycjon/WOFT/

🖥 Github: https://github.com/serycjon/WOFT

⭐️Paper: arxiv.org/pdf/2301.10057.pdf

💻 Dataset : https://www3.cs.stonybrook.edu/~hling/data/POT-210/planar_benchmark.html

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥103
🔍 A meta-dataset for few-shot image classification

Meta Album is a meta-dataset created for few-shot learning, meta-learning, continual learning and so on.

Meta-datase — это набор метаданных, созданный , состоящий из 40 датасетов разбитых на 10 уникальных категорий. Это постоянно пополняемый набор метаданных.

⭐️ Meta-dataset: https://meta-album.github.io/

🖥 Github: https://github.com/ihsaan-ullah/meta-album

⭐️Paper: https://arxiv.org/abs/2302.08909v1

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥31👏1
💨 3D Object Tracking

Multi-modality tracker that fuses information from visual appearance and geometry to estimate object poses.

Список алгоритмов по отслеживанию 3D-объектов.


🖥 Github: https://github.com/dlr-rm/3dobjecttracking

⭐️Paper: https://arxiv.org/abs/2302.11458v1

Video: https://www.youtube.com/watch?v=0ORZvDDbDjA

💻 Dataset : https://paperswithcode.com/dataset/ycb-video

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥31
Video Localized Narratives

Video Localized Narratives, a new form of multimodal video annotations connecting vision and language.

Новая модель от Google позволяет генерировать аннотации к видео, фиксируя даже сложные события.

Авторы уже аннотировали 20 тыс. видео из датасетов OVIS, UVO и Oops, в общей сложности 1,7 млн. слов.

🖥 Github: https://github.com/google/video-localized-narratives

⭐️Paper: https://arxiv.org/abs/2302.11217v1

Project: https://www.youtube.com/watch?v=0ORZvDDbDjA

💻 Dataset : https://paperswithcode.com/dataset/video-localized-narratives

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17🔥62
📡 Learning Visual Representations via Language-Guided Sampling

New approach deviates from image-text contrastive learning by relying on pre-trained language models to guide the learning rather than minimize a cross-modal similarity.

Новый альтернативный подход к визуальному обучению: с использованием языкового сходства для выборки семантически схожих пар изображений.

🖥 Github: https://github.com/mbanani/lgssl

⭐️Paper: https://arxiv.org/abs/2302.12248v1

Pre-trained Checkpoints: https://www.dropbox.com/sh/me6nyiewlux1yh8/AAAPrD2G0_q_ZwExsVOS_jHQa?dl=0

💻 Dataset : https://paperswithcode.com/dataset/redcaps

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍172🔥2