🦖 Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation
Dynosaur, a large-scale instruction tuning dataset obtained automatically with significantly lower generation costs.
Новый фреймворк для широкого спектра NLP задач для instruction tuning и генерации датсетов, при низких высчислительных затратах и высоком качетсве данных.
🖥 Github: https://github.com/wadeyin9712/dynosaur
🔎 Project: https://dynosaur-it.github.io/
⏩ Paper: https://arxiv.org/abs/2305.14327
📌 Dataset: https://paperswithcode.com/dataset/ffhq
ai_machinelearning_big_data
Dynosaur, a large-scale instruction tuning dataset obtained automatically with significantly lower generation costs.
Новый фреймворк для широкого спектра NLP задач для instruction tuning и генерации датсетов, при низких высчислительных затратах и высоком качетсве данных.
🔎 Project: https://dynosaur-it.github.io/
📌 Dataset: https://paperswithcode.com/dataset/ffhq
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍9🥰1🌭1
Prompt-Free Diffusion: Taking "Text" out of Text-to-Image Diffusion Models
The performance of Text2Image is largely dependent on text prompts. In Prompt-Free Diffusion, no prompt is needed, just a reference images.
Prompt-Free Diffusion - это модель диффузии, которая принимает визуальные данные для генерации изображений без ввода текстовых промптов.
🖥 Github: https://github.com/shi-labs/prompt-free-diffusion
🔎 Demo: https://huggingface.co/spaces/shi-labs/Prompt-Free-Diffusion
⏩ Paper: https://arxiv.org/abs/2305.16223v1
📌 Dataset: https://paperswithcode.com/dataset/ffhq
ai_machinelearning_big_data
The performance of Text2Image is largely dependent on text prompts. In Prompt-Free Diffusion, no prompt is needed, just a reference images.
Prompt-Free Diffusion - это модель диффузии, которая принимает визуальные данные для генерации изображений без ввода текстовых промптов.
🔎 Demo: https://huggingface.co/spaces/shi-labs/Prompt-Free-Diffusion
📌 Dataset: https://paperswithcode.com/dataset/ffhq
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥3🥰1
Large Language Models as Tool Makers
In this work, we take an initial step towards removing this dependency by proposing a closed-loop framework, referred to as LLMs A s Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving.
Фреймворк для работы с большими языковыми моделями для создатния инструментов и скриптов на Python.
🖥 Github: https://github.com/ctlllll/llm-toolmaker
⏩ Paper: https://arxiv.org/pdf/2305.17126v1.pdf
📌 Dataset: https://paperswithcode.com/dataset/big-bench
ai_machinelearning_big_data
In this work, we take an initial step towards removing this dependency by proposing a closed-loop framework, referred to as LLMs A s Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving.
Фреймворк для работы с большими языковыми моделями для создатния инструментов и скриптов на Python.
📌 Dataset: https://paperswithcode.com/dataset/big-bench
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤2🔥2
Стань лучшим на онлайн-хакатоне PROFBUH HACKATHON | JUNE 🏆
Открыта регистрация на онлайн-хакатон от компании Профбух и Акселератора Возможностей!
Кейс:
🔹Автоматическое создание текстовых публикаций на основе записанного видео.
Даты хакатона:
23 – 25 июня 2023 года
Дедлайн регистрации:
19 июня 23:59
Регистрация и подробности - https://clck.ru/34WoFU
Кому подходит хакатон?
🔸Студентам, разработчикам, дизайнерам, продакт-менеджерам и аналитикам.
Что нужно будет сделать?
🔸Разработать web-систему для автоматического создания уникальных статей на основе видео из YouTube.
Что тебя ждёт?
🔹2 дня в онлайн-формате
🔹встречи с экспертами, мастер-классы и питчи
🔹крутой командный проект и интересный кейс в резюме
🔹призовой фонд – 300.000₽
Регистрируйся, решай кейс и выигрывай призы!🏆
Открыта регистрация на онлайн-хакатон от компании Профбух и Акселератора Возможностей!
Кейс:
🔹Автоматическое создание текстовых публикаций на основе записанного видео.
Даты хакатона:
23 – 25 июня 2023 года
Дедлайн регистрации:
19 июня 23:59
Регистрация и подробности - https://clck.ru/34WoFU
Кому подходит хакатон?
🔸Студентам, разработчикам, дизайнерам, продакт-менеджерам и аналитикам.
Что нужно будет сделать?
🔸Разработать web-систему для автоматического создания уникальных статей на основе видео из YouTube.
Что тебя ждёт?
🔹2 дня в онлайн-формате
🔹встречи с экспертами, мастер-классы и питчи
🔹крутой командный проект и интересный кейс в резюме
🔹призовой фонд – 300.000₽
Регистрируйся, решай кейс и выигрывай призы!🏆
❤2👍2
Multilingual/multidomain question generation datasets, models, and python library for question generation.
lmqg - это библиотека python для генерации вопросов и ответов (QAG) с помощью языковых моделей (LM).
📌 Dataset: https://paperswithcode.com/dataset/squad
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍4🔥3
Нейронки уже безвозвратно изменили айти. В этом году только ленивый не написал, что вставьте название профессии сюда скоро заменит ChatGPT.
Как реально ИИ отразится на работе программиста и как в системе, где нейросеть за секунды может сгенерировать простой код, выживать джунам, пишут в телеграм-канале Skolkovo LIVE.
А еще они объясняют базу для стартаперов и рассказывают про нестыдные российские проекты, подпишитесь.
Как реально ИИ отразится на работе программиста и как в системе, где нейросеть за секунды может сгенерировать простой код, выживать джунам, пишут в телеграм-канале Skolkovo LIVE.
А еще они объясняют базу для стартаперов и рассказывают про нестыдные российские проекты, подпишитесь.
Telegram
Skolkovo LIVE
Как нейросети меняют программирование? 🤖
ChatGPT заставил многих специалистов всерьез переживать о будущем своей профессии — в том числе, и программистов. Ведь ИИ может без труда сгенерировать код. Как это повлияет на ИТ?
Спросим у Алексея Каленчука, директора…
ChatGPT заставил многих специалистов всерьез переживать о будущем своей профессии — в том числе, и программистов. Ведь ИИ может без труда сгенерировать код. Как это повлияет на ИТ?
Спросим у Алексея Каленчука, директора…
👍8😁1
🦙 BigTrans 🚀
BigTrans which adapts LLaMA that covers only 20 languages and enhances it with multilingual translation capability on more than 100 languag
Предварительные эксперименты по многоязычному переводу показывают, что BigTrans сравним с ChatGPT и Google Translate на многих языках и даже превосходит ChatGPT в 8 языковых парах.
🖥 Github: https://github.com/ZNLP/BigTrans/tree/main
⏩ Paper: https://arxiv.org/abs/2305.18098v1
📌 Dataset: https://paperswithcode.com/dataset/flores-200
ai_machinelearning_big_data
BigTrans which adapts LLaMA that covers only 20 languages and enhances it with multilingual translation capability on more than 100 languag
Предварительные эксперименты по многоязычному переводу показывают, что BigTrans сравним с ChatGPT и Google Translate на многих языках и даже превосходит ChatGPT в 8 языковых парах.
📌 Dataset: https://paperswithcode.com/dataset/flores-200
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥3❤1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 GPT4Tools: Teaching LLM to Use Tools via Self-instruction
GPT4Tools is a centralized system that can control multiple visual foundation models. It is based on Vicuna (LLaMA), and 71K self-built instruction data.
GPT4Tools - это интеллектуальная система, которая может автоматически принимать решения, управлять и использовать различные визуальные модели, позволяя пользователю взаимодействовать с изображениями во время диалога с Chatgpt.
🖥 Github: https://github.com/stevengrove/gpt4tools
⏩ Paper: https://arxiv.org/abs/2305.18752v1
📌 Project: https://gpt4tools.github.io/
ai_machinelearning_big_data
GPT4Tools is a centralized system that can control multiple visual foundation models. It is based on Vicuna (LLaMA), and 71K self-built instruction data.
GPT4Tools - это интеллектуальная система, которая может автоматически принимать решения, управлять и использовать различные визуальные модели, позволяя пользователю взаимодействовать с изображениями во время диалога с Chatgpt.
📌 Project: https://gpt4tools.github.io/
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍6🔥2
Платформа Sber Process Mining заменит иностранную процессную аналитику для внутреннего аудита X5 Group. Процесс перехода уже состоялся и специалисты X5 продолжат автоматизировать проверки соответствия бизнес-процессов установленным нормативам и тестирование контрольных процедур на российском программном обеспечении.
Плюсы от перехода на платформу Sber Process Mining для X5 Group:
✅Отечественное ПО — снижение зависимости от западных вендоров
✅Сохранение возможности регулярного тестирования контрольных процедур на больших объемах данных
✅Быстрый поиск отклонений и нарушений, в том числе недоступных для выявления традиционными средствами
✅Встроенные инструменты машинного обучения
✅ Может применяться для оптимизации любых процессов с цифровыми следами
«Мы гордимся нашим сотрудничеством с X5 Group. Это отличный пример синергии, которая позволила нам совместно решить амбициозную задачу по вендерозамещению решения от лидера мирового рынка. Глубокая экспертиза коллег и качественная обратная связь позволили нам вывести платформу Sber Process Mining на уровень лучших мировых практик», — заявил вице-президент Сбера Тарас Скворцов.
Подробности:
https://platformv.sber.ru/products/sber-process-mining
Плюсы от перехода на платформу Sber Process Mining для X5 Group:
✅Отечественное ПО — снижение зависимости от западных вендоров
✅Сохранение возможности регулярного тестирования контрольных процедур на больших объемах данных
✅Быстрый поиск отклонений и нарушений, в том числе недоступных для выявления традиционными средствами
✅Встроенные инструменты машинного обучения
✅ Может применяться для оптимизации любых процессов с цифровыми следами
«Мы гордимся нашим сотрудничеством с X5 Group. Это отличный пример синергии, которая позволила нам совместно решить амбициозную задачу по вендерозамещению решения от лидера мирового рынка. Глубокая экспертиза коллег и качественная обратная связь позволили нам вывести платформу Sber Process Mining на уровень лучших мировых практик», — заявил вице-президент Сбера Тарас Скворцов.
Подробности:
https://platformv.sber.ru/products/sber-process-mining
Platform V
Platform V Sber Process Mining - автоматизация процессов от СберТех
Platform V Process Mining от Сбера - приложения и программы на базе цифровой платформы для автоматизации бизнес процессов: технология от СберТех
👍13😁3⚡2🥱1
This media is not supported in your browser
VIEW IN TELEGRAM
Introducing BERTopic Integration with the Hugging Face Hub
BERTopic provides a powerful tool for users to uncover significant topics within text collections, thereby gaining valuable insights.
BERTopic - это современная библиотека Python, которая упрощает процесс моделирования тем, используя различные трансформеры и c-TF-IDF для создания кластеров на основе плотности, позволяющих легко интерпретировать темы, сохраняя при этом важные слова в описаниях тем.
pip install bertopic
🤗 Hugging face: https://huggingface.co/blog/bertopic
🖥 Github: https://github.com/MaartenGr/BERTopic
⏩ Colab: https://colab.research.google.com/#fileId=https://huggingface.co/spaces/davanstrien/blog_notebooks/blob/main/BERTopic_hub_starter.ipynb
📌 Docs: https://maartengr.github.io/BERTopic/getting_started/quickstart/quickstart.html
ai_machinelearning_big_data
BERTopic provides a powerful tool for users to uncover significant topics within text collections, thereby gaining valuable insights.
BERTopic - это современная библиотека Python, которая упрощает процесс моделирования тем, используя различные трансформеры и c-TF-IDF для создания кластеров на основе плотности, позволяющих легко интерпретировать темы, сохраняя при этом важные слова в описаниях тем.
pip install bertopic
🤗 Hugging face: https://huggingface.co/blog/bertopic
📌 Docs: https://maartengr.github.io/BERTopic/getting_started/quickstart/quickstart.html
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍7🔥2
В последнее время только и разговоров, что о нейросетях. Кто-то боится, что AI заберёт у них работу, а кто-то с его помощью повышают свою эффективность. Каждый, кто использует нейронки, уже немного приблизился к новой профессии. Мы ещё не знаем, как она будет называться. Но никто не мешает проявить фантазию: лид продуктового направления по ML ВКонтакте Иван Самсонов дал ей кодовое название — погонщик нейросетей.
Заглядывайте в статью и узнайте, как поймать волну перемен: вас ждёт большая подборка инструментов и небольшой туториал, как уже сейчас можно использовать их в работе.
📌Хабр: https://habr.com/ru/companies/vk/articles/738776/
ai_machinelearning_big_data
Заглядывайте в статью и узнайте, как поймать волну перемен: вас ждёт большая подборка инструментов и небольшой туториал, как уже сейчас можно использовать их в работе.
📌Хабр: https://habr.com/ru/companies/vk/articles/738776/
ai_machinelearning_big_data
👎10👍5👨💻2🔥1🤣1🗿1
🔥 10 Free Machine Learning Courses from Top Universities
Топ бесплатных курсов машинного обучения от лучших университетов мира
1. Introduction to Machine Learning - UC Berkeley
2. Introduction to Machine Learning - Carnegie Mellon University
3. Machine Learning - Stanford University
4. Machine Learning & Data Mining - Caltech
5. Learning from Data - Caltech
6. Machine Learning for Intelligent Systems - Cornell University
7. Large Scale Machine Learning - University of Toronto
8. Machine Learning with Large Datasets - Carnegie Mellon University
9. Foundations of Machine Learning and Statistical Inference - Caltech
10. Algorithmic Aspects of Machine Learning - MIT
ai_machinelearning_big_data
Топ бесплатных курсов машинного обучения от лучших университетов мира
1. Introduction to Machine Learning - UC Berkeley
2. Introduction to Machine Learning - Carnegie Mellon University
3. Machine Learning - Stanford University
4. Machine Learning & Data Mining - Caltech
5. Learning from Data - Caltech
6. Machine Learning for Intelligent Systems - Cornell University
7. Large Scale Machine Learning - University of Toronto
8. Machine Learning with Large Datasets - Carnegie Mellon University
9. Foundations of Machine Learning and Statistical Inference - Caltech
10. Algorithmic Aspects of Machine Learning - MIT
ai_machinelearning_big_data
❤18👍8🔥4👏1🦄1
Positive Hack Days, новые железки и покупки
Новое видео на YouTube-канале Yandex Cloud 😎
Вместе с гостями из «ЛитРес», EORA и архитектором Yandex Cloud Евгением Парфёновым обсуждаем много интересного в регулярном выпуске Monthly Cloud News Maу:
— форум по кибербезопасности Positive Hack Days;
— сделку Microsoft и Activision Blizzard;
— сканер уязвимости контейнерных образов;
— историю DNS и лазейки в WAF;
— повседневные новости Yandex DataSphere и Yandex SpeechKit.
Хотите узнать больше? Смотрите видео и делитесь им с друзьями 😉
Новое видео на YouTube-канале Yandex Cloud 😎
Вместе с гостями из «ЛитРес», EORA и архитектором Yandex Cloud Евгением Парфёновым обсуждаем много интересного в регулярном выпуске Monthly Cloud News Maу:
— форум по кибербезопасности Positive Hack Days;
— сделку Microsoft и Activision Blizzard;
— сканер уязвимости контейнерных образов;
— историю DNS и лазейки в WAF;
— повседневные новости Yandex DataSphere и Yandex SpeechKit.
Хотите узнать больше? Смотрите видео и делитесь им с друзьями 😉
👍7❤1🔥1😨1
Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
Hiera is a hierarchical vision transformer that is fast, powerful, and, above all, simple. It outperforms the state-of-the-art across a wide array of image and video tasks while being much faster.
Hiera - это быстрый, мощный и, прежде всего, простой метод иерархической перегруппировки информации.
Он превосходит современные методы в широком спектре задач, связанных с изображениями и видео.
🖥 Github: https://github.com/facebookresearch/hiera
⏩ Paper: https://arxiv.org/abs/2306.00989v1
📌 Dataset: https://paperswithcode.com/dataset/inaturalist
ai_machinelearning_big_data
Hiera is a hierarchical vision transformer that is fast, powerful, and, above all, simple. It outperforms the state-of-the-art across a wide array of image and video tasks while being much faster.
Hiera - это быстрый, мощный и, прежде всего, простой метод иерархической перегруппировки информации.
Он превосходит современные методы в широком спектре задач, связанных с изображениями и видео.
pip install hiera-transformer
📌 Dataset: https://paperswithcode.com/dataset/inaturalist
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥3❤2
🔥 Подборка полезных папок с каналами для датасаентисов
Папки, где вы найдете каналы с разбором лучших практик написания кода на Python и Golang до каналов по машинному обучению и нейросетям (папки работают на последних версиях тг).
https://news.1rj.ru/str/addlist/2Ls-snqEeytkMDgy - Машинное обучение
https://news.1rj.ru/str/addlist/8vDUwYRGujRmZjFi - Python
https://news.1rj.ru/str/addlist/MUtJEeJSxeY2YTFi - Golang
Папки, где вы найдете каналы с разбором лучших практик написания кода на Python и Golang до каналов по машинному обучению и нейросетям (папки работают на последних версиях тг).
https://news.1rj.ru/str/addlist/2Ls-snqEeytkMDgy - Машинное обучение
https://news.1rj.ru/str/addlist/8vDUwYRGujRmZjFi - Python
https://news.1rj.ru/str/addlist/MUtJEeJSxeY2YTFi - Golang
🔥8👍2👎2🥰2❤1🤓1
Wuerstchen: Efficient Pretraining of Text-to-Image Models
Novel technique for text-to-image synthesis that unites competitive performance with unprecedented cost-effectiveness and ease of training on constrained hardwar
Würstchen - это новый фреймворк для обучения моделей преобразования текста в изображения путем перемещения затратного вычислительно этапа текстового преобразования в сильно сжатое латентное пространство
🖥 Github: https://github.com/dome272/wuerstchen
⏩ Paper: https://arxiv.org/abs/2306.00637v1
📌 Colab: https://colab.research.google.com/drive/1UTP9Xn2UIrVbAXyL-SKEvyLmgVWdw-Vy
ai_machinelearning_big_data
Novel technique for text-to-image synthesis that unites competitive performance with unprecedented cost-effectiveness and ease of training on constrained hardwar
Würstchen - это новый фреймворк для обучения моделей преобразования текста в изображения путем перемещения затратного вычислительно этапа текстового преобразования в сильно сжатое латентное пространство
📌 Colab: https://colab.research.google.com/drive/1UTP9Xn2UIrVbAXyL-SKEvyLmgVWdw-Vy
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14❤4🔥3🌭1
⚡ Generative AI learning path
This learning path guides you through a curated collection of content on Generative AI products and technologies.
10 бесплатных курсов от Googel, которые помогут вам погрузиться в технологии генеративного ИИ: от основ больших языковых моделей до создания и развертывания решений генеративного ИИ в Google Cloud.
▪Introduction to Generative AI
▪Introduction to Large Language Models
▪Introduction to Responsible AI
▪Introduction to Image Generation
▪Encoder-Decoder Architecture
▪Attention Mechanism
▪Transformer Models and BERT Model
▪Create Image Captioning Models
▪Introduction to Generative AI Studio
▪Generative AI Explorer - Vertex AI
https://www.cloudskillsboost.google/paths/118
ai_machinelearning_big_data
This learning path guides you through a curated collection of content on Generative AI products and technologies.
10 бесплатных курсов от Googel, которые помогут вам погрузиться в технологии генеративного ИИ: от основ больших языковых моделей до создания и развертывания решений генеративного ИИ в Google Cloud.
▪Introduction to Generative AI
▪Introduction to Large Language Models
▪Introduction to Responsible AI
▪Introduction to Image Generation
▪Encoder-Decoder Architecture
▪Attention Mechanism
▪Transformer Models and BERT Model
▪Create Image Captioning Models
▪Introduction to Generative AI Studio
▪Generative AI Explorer - Vertex AI
https://www.cloudskillsboost.google/paths/118
ai_machinelearning_big_data
👍16🔥5❤3🤔2
New benchmark (GRES), which extends the classic RES to allow expressions to refer to an arbitrary number of target objects.
Новый метод и датасет расширяющий классический RES, который принимает изображение и тектовое описание в качестве входных данных для сегментации и обнаружения множественных объектов.
🔎 Project: https://henghuiding.github.io/GRES/
📌 New dataset: https://github.com/henghuiding/gRefCOCO
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤4🔥1