Judge large language model, named PandaLM, which is trained to distinguish the superior model given several LLMs. PandaLM's focus extends beyond just the objective correctness of responses, which is the main focus of traditional evaluation datasets.
PandaLM - обеспечивает автоматизированные сравнения между различными большими языковыми моделями (LLM). Задавая одинаковый контекст, PandaLM может сравнивать ответы различных LLM и предоставлять причину решения вместе с эталонным ответом.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤3🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
📹 Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models
It is a multimodal model that merges a video-adapted visual encoder with a LLM.
Video-ChatGPT - это новая модель, способная генерировать осмысленные разговоры о видео.
🖥 Github: https://github.com/mbzuai-oryx/video-chatgpt
⭐️ Demo: https://www.ival-mbzuai.com/video-chatgpt
📕 Paper: https://arxiv.org/abs/2306.05424v1
🔗 Dataset: https://paperswithcode.com/dataset/activitynet-qa
ai_machinelearning_big_data
It is a multimodal model that merges a video-adapted visual encoder with a LLM.
Video-ChatGPT - это новая модель, способная генерировать осмысленные разговоры о видео.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15👍10❤4
Топ-210 технологических решений представили на фестивале «Лидеры цифровой трансформации»
Мероприятие стало финалом самого масштабного одноименного хакатона. ИТ-специалисты со всего мира вышли в офлайн, чтобы представить свои разработки для города и бизнеса. 210 команд ждут итоги и уже завтра жюри назовут имена победителей.
Центральной локацией фестиваля стал брендированный корнер Tada․team с интерактивными задачами и лаунж-зоной. Участники могут выиграть мерч, пройдя квест, сканируя qr-код и запуская приложение чат-бота «История технологий».
Сегодня на сцене выступили научно-популярные спикеры, которые рассказали участникам о последних трендах в ИТ, о квантовых информационных технологиях, эволюции мозга, инновациях в персональных ДНК-тестах и синтетическом дизайне как инструменте для стартапов. Завершился день концертом от 4NN4 (экс- Cream Soda) и группы «Винтаж».
Мероприятие стало финалом самого масштабного одноименного хакатона. ИТ-специалисты со всего мира вышли в офлайн, чтобы представить свои разработки для города и бизнеса. 210 команд ждут итоги и уже завтра жюри назовут имена победителей.
Центральной локацией фестиваля стал брендированный корнер Tada․team с интерактивными задачами и лаунж-зоной. Участники могут выиграть мерч, пройдя квест, сканируя qr-код и запуская приложение чат-бота «История технологий».
Сегодня на сцене выступили научно-популярные спикеры, которые рассказали участникам о последних трендах в ИТ, о квантовых информационных технологиях, эволюции мозга, инновациях в персональных ДНК-тестах и синтетическом дизайне как инструменте для стартапов. Завершился день концертом от 4NN4 (экс- Cream Soda) и группы «Винтаж».
👍18❤5👎5🔥4🤷♂1
🏔️ Large Language Model for Geoscience
We introduce K2 (7B), an open-source language model trained by firstly further pretraining LLaMA on collected and cleaned geoscience literature, including geoscience open-access papers and Wikipedia pages, and secondly fine-tuning with knowledge-intensive instruction tuning data (GeoSignal).
Применение базовой языковой модели для понимания и использования знаний в области геонаук
🖥 Github: https://github.com/davendw49/k2
⭐️ Demo: https://huggingface.co/daven3/k2_fp_delta
📕 Paper: https://arxiv.org/abs/2306.05064v1
🔗 Dataset: https://huggingface.co/datasets/daven3/geosignal
ai_machinelearning_big_data
We introduce K2 (7B), an open-source language model trained by firstly further pretraining LLaMA on collected and cleaned geoscience literature, including geoscience open-access papers and Wikipedia pages, and secondly fine-tuning with knowledge-intensive instruction tuning data (GeoSignal).
Применение базовой языковой модели для понимания и использования знаний в области геонаук
git clone https://github.com/davendw49/k2.git
cd k2
conda env create -f k2.yml
conda activate k2ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥5❤4💅1
Unlike proprietary models, FinGPT takes a data-centric approach, providing researchers and practitioners with accessible and transparent resources to develop their FinLLMs.
Большая языковая модель с открытым исходным кодом FinGPT для финансового сектор. Полный пайплайн для обучения и доработки LLM в области финансов.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥5❤4😱1👌1
This media is not supported in your browser
VIEW IN TELEGRAM
🧔 4DHumans: Reconstructing and Tracking Humans with Transformers
Fully "transformerized" version of a network for human mesh recovery.
Высокоточная модель реконструкции и отслеживания человека в 3D.
🖥 Github: https://github.com/shubham-goel/4D-Humans
⭐️ Colab: https://colab.research.google.com/drive/1Ex4gE5v1bPR3evfhtG7sDHxQGsWwNwby?usp=sharing
📕 Paper: https://arxiv.org/pdf/2305.20091.pdf
🔗 Project: https://shubham-goel.github.io/4dhumans/
ai_machinelearning_big_data
Fully "transformerized" version of a network for human mesh recovery.
Высокоточная модель реконструкции и отслеживания человека в 3D.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤5🔥3
Новая программная библиотека от Сбера Py-Boost позволит в несколько раз повысить скорость разработки моделей машинного обучения. Использоваться для этого будет алгоритм SketchBoost, рассказал Александр Ведяхин, первый зампред правления Сбера, в рамках ПМЭФ.
SketchBoost реализует новый подход к использованию методов бустинга при обучении ИИ-моделей — он применяется также в финансах и страховании для решения B2B-задач.
«Совершенствование технологий на базе машинного обучения — это не только тренд, но и способ повысить качество контакта с клиентом, возможность подобрать именно тот продукт, который максимально отвечает его предпочтениям. Для этого мы представили алгоритм, который в разы ускоряет обучение моделей искусственного интеллекта и, как следствие, вывод на рынок разработок в области рекомендательных сервисов в сфере финансов и страхования», — подчеркнул Ведяхин.
▪GitHub
ai_machinelearning_big_data
SketchBoost реализует новый подход к использованию методов бустинга при обучении ИИ-моделей — он применяется также в финансах и страховании для решения B2B-задач.
«Совершенствование технологий на базе машинного обучения — это не только тренд, но и способ повысить качество контакта с клиентом, возможность подобрать именно тот продукт, который максимально отвечает его предпочтениям. Для этого мы представили алгоритм, который в разы ускоряет обучение моделей искусственного интеллекта и, как следствие, вывод на рынок разработок в области рекомендательных сервисов в сфере финансов и страхования», — подчеркнул Ведяхин.
▪GitHub
ai_machinelearning_big_data
👍18🔥5🤣5❤3🫡1
⚡ 21 Must-Have Cheat Sheets for Data Science Interviews: Unlocking Your Path to Success
Список полезных шпаргалок для подготовки к собеседованию по Data Science.
📌 А здесь мощная шпаргалка по всем языкам.
▪SQL
1. SQL Basics Cheat Sheet
2. The Essential SQL Commands Cheat Sheet for Beginners
3. SQL Cheat Sheet – Technical Concepts for the Job Interview
▪Python
4. Python Cheat Sheet
5. Python Cheat Sheet
6. Comprehensive Python Cheatsheet
▪R
7. RStudio Cheatsheets
▪Data Structures
8. Data Structures Reference
9. An Executable Data Structures Cheat Sheet for Interviews
▪Data Manipulation
10. Pandas Cheat Sheet for Data Science
11. Pandas Cheat Sheet
12. Data Wrangling With pandas Cheat Sheet
▪Data Visualization
13. Data Visualization Cheat Sheet
14. Data Visualization Cheat Sheet
15. Data Visualization Cheat Sheets
▪Statistics & Probability
16. A Comprehensive Statistics Cheat Sheet for Data Science Interviews
17. The Most Comprehensive Stats Cheat Sheet
18. Statistics Cheat Sheet
▪Algorithms & Models
19. Top Prediction Algorithms
20. Your Ultimate Data Science Statistics & Mathematics Cheat Sheet
21. Cheat Sheet for Machine Learning Models
ai_machinelearning_big_data
Список полезных шпаргалок для подготовки к собеседованию по Data Science.
📌 А здесь мощная шпаргалка по всем языкам.
▪SQL
1. SQL Basics Cheat Sheet
2. The Essential SQL Commands Cheat Sheet for Beginners
3. SQL Cheat Sheet – Technical Concepts for the Job Interview
▪Python
4. Python Cheat Sheet
5. Python Cheat Sheet
6. Comprehensive Python Cheatsheet
▪R
7. RStudio Cheatsheets
▪Data Structures
8. Data Structures Reference
9. An Executable Data Structures Cheat Sheet for Interviews
▪Data Manipulation
10. Pandas Cheat Sheet for Data Science
11. Pandas Cheat Sheet
12. Data Wrangling With pandas Cheat Sheet
▪Data Visualization
13. Data Visualization Cheat Sheet
14. Data Visualization Cheat Sheet
15. Data Visualization Cheat Sheets
▪Statistics & Probability
16. A Comprehensive Statistics Cheat Sheet for Data Science Interviews
17. The Most Comprehensive Stats Cheat Sheet
18. Statistics Cheat Sheet
▪Algorithms & Models
19. Top Prediction Algorithms
20. Your Ultimate Data Science Statistics & Mathematics Cheat Sheet
21. Cheat Sheet for Machine Learning Models
ai_machinelearning_big_data
🔥22👍18❤7🙏1
Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and Text Integration
Macaw-LLM is a model of its kind, bringing together state-of-the-art models for processing visual, auditory, and textual information, namely CLIP, Whisper, and LLaMA.
Macaw-LLM - новый мультимодальный LLM, который легко объединяет визуальную, аудио и текстовую информацию. Модель построена на основе CLIP, Whisper и LLaMA и обеспечивает бесшовную интеграцию мультимодальных данных.
🖥 Github: https://github.com/lyuchenyang/macaw-llm
⭐️ Model: https://tinyurl.com/yem9m4nf
📕 Paper: https://tinyurl.com/4rsexudv
🔗 Dataset: https://github.com/lyuchenyang/Macaw-LLM/blob/main/data
ai_machinelearning_big_data
Macaw-LLM is a model of its kind, bringing together state-of-the-art models for processing visual, auditory, and textual information, namely CLIP, Whisper, and LLaMA.
Macaw-LLM - новый мультимодальный LLM, который легко объединяет визуальную, аудио и текстовую информацию. Модель построена на основе CLIP, Whisper и LLaMA и обеспечивает бесшовную интеграцию мультимодальных данных.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤9🔥6👌1
🔥 Подборка каналов для Дата сайентиста
🖥 Machine learning
datasc - Data science в телеграм!
@bigdatai - Big Data
@machinelearning_ru – гайды по машинному обучению
@machinelearning_interview – подготовка к собеседованию мл.
@datascienceiot – бесплатные книги ds
@ArtificialIntelligencedl – ИИ
@machinee_learning – чат о машинном обучении
@datascienceml_jobs - вакансии ds, ml
@Machinelearning_Jobs - чат с вакансиями
#️⃣ c# c++
C# - погружение в C#
@csharp_cplus чат
С++ - обучающий канал по C++.
@csharp_1001_notes - инструменты C#
🖥 SQL базы данных
@sqlhub - Повышение эффективности кода с грамотным использованием бд.
@chat_sql - чат изучения бд.
👣 Golang
@Golang_google - восхитительный язык от Google, мощный и перспективный.
@golang_interview - вопросы и ответы с собеседований по Go. Для всех уровней разработчиков.
@golangtests - интересные тесты и задачи GO
@golangl - чат изучающих Go
@GolangJobsit - отборные вакансии и работа GO
@golang_jobsgo - чат для ищущих работу.
@golang_books - полезные книги Golang
@golang_speak - обсуждение языка Go
@golangnewss - новости go
🖥 Linux
linux - kali linux ос для хакинга
linux chat - чат linux для обучения и помощи.
@linux_read - бесплатные книги linux
🖥 Python
@pythonl - главный канал самого популярного языка программирования.
@pro_python_code – учим python с ментором.
@python_job_interview – подготовка к Python собеседованию.
@python_testit - проверочные тесты на python
@pythonlbooks - современные книги Python
@python_djangojobs - работа для Python программистов
@python_django_work - чат обсуждения вакансий
🖥 Javanoscript / front
@react_tg - - 40,14% разработчиков сайтов использовали React в 2022 году - это самая популярная библиотека для создания сайтов.
@javanoscript -канал для JS и FrontEnd разработчиков. Лучшие практики и примеры кода. Туториалы и фишки JS
@Js Tests - каверзные тесты JS
@hashdev - погружение в web разработку.
@javanoscriptjobjs - отборные вакансии и работа FrontEnd.
@jsspeak - чат поиска FrontEnd работы.
🖥 Java
@javatg - выучить Java с senior разработчиком на практике
@javachats - чат для ответов на вопросы по Java
@java_library - библиотека книг Java
@android_its - Android разработка
@java_quizes - тесты Java
@Java_workit - работа Java
@progersit - шпаргалки ит
👷♂️ IT работа
https://news.1rj.ru/str/addlist/_zyy_jQ_QUsyM2Vi -ит каналы по яп с вакансиями
🤡It memes
@memes_prog - ит-мемы
⚙️ Rust
@rust_code - Rust избавлен от болевых точек, которые есть во многих современных яп
@rust_chats - чат rust
📓 Книги
https://news.1rj.ru/str/addlist/HwywK4fErd8wYzQy - актуальные книги по всем яп
⭐️ Нейронные сети
@vistehno - chatgpt ведет блог, решает любые задачи и отвечает на любые ваши вопросы.
@aigen - сети для генерации картинок. видео, музыки и многого другого.
@neural – погружение в нейросети.
📢 English for coders
@english_forprogrammers - Английский для программистов
🖥 Devops
Devops - канал для DevOps специалистов.
datasc - Data science в телеграм!
@bigdatai - Big Data
@machinelearning_ru – гайды по машинному обучению
@machinelearning_interview – подготовка к собеседованию мл.
@datascienceiot – бесплатные книги ds
@ArtificialIntelligencedl – ИИ
@machinee_learning – чат о машинном обучении
@datascienceml_jobs - вакансии ds, ml
@Machinelearning_Jobs - чат с вакансиями
#️⃣ c# c++
C# - погружение в C#
@csharp_cplus чат
С++ - обучающий канал по C++.
@csharp_1001_notes - инструменты C#
@sqlhub - Повышение эффективности кода с грамотным использованием бд.
@chat_sql - чат изучения бд.
@Golang_google - восхитительный язык от Google, мощный и перспективный.
@golang_interview - вопросы и ответы с собеседований по Go. Для всех уровней разработчиков.
@golangtests - интересные тесты и задачи GO
@golangl - чат изучающих Go
@GolangJobsit - отборные вакансии и работа GO
@golang_jobsgo - чат для ищущих работу.
@golang_books - полезные книги Golang
@golang_speak - обсуждение языка Go
@golangnewss - новости go
linux - kali linux ос для хакинга
linux chat - чат linux для обучения и помощи.
@linux_read - бесплатные книги linux
@pythonl - главный канал самого популярного языка программирования.
@pro_python_code – учим python с ментором.
@python_job_interview – подготовка к Python собеседованию.
@python_testit - проверочные тесты на python
@pythonlbooks - современные книги Python
@python_djangojobs - работа для Python программистов
@python_django_work - чат обсуждения вакансий
@react_tg - - 40,14% разработчиков сайтов использовали React в 2022 году - это самая популярная библиотека для создания сайтов.
@javanoscript -канал для JS и FrontEnd разработчиков. Лучшие практики и примеры кода. Туториалы и фишки JS
@Js Tests - каверзные тесты JS
@hashdev - погружение в web разработку.
@javanoscriptjobjs - отборные вакансии и работа FrontEnd.
@jsspeak - чат поиска FrontEnd работы.
@javatg - выучить Java с senior разработчиком на практике
@javachats - чат для ответов на вопросы по Java
@java_library - библиотека книг Java
@android_its - Android разработка
@java_quizes - тесты Java
@Java_workit - работа Java
@progersit - шпаргалки ит
👷♂️ IT работа
https://news.1rj.ru/str/addlist/_zyy_jQ_QUsyM2Vi -ит каналы по яп с вакансиями
🤡It memes
@memes_prog - ит-мемы
⚙️ Rust
@rust_code - Rust избавлен от болевых точек, которые есть во многих современных яп
@rust_chats - чат rust
📓 Книги
https://news.1rj.ru/str/addlist/HwywK4fErd8wYzQy - актуальные книги по всем яп
@vistehno - chatgpt ведет блог, решает любые задачи и отвечает на любые ваши вопросы.
@aigen - сети для генерации картинок. видео, музыки и многого другого.
@neural – погружение в нейросети.
@english_forprogrammers - Английский для программистов
Devops - канал для DevOps специалистов.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍3👏2🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🌐 WizMap: Scalable Interactive Visualization for Exploring Large Machine Learning Embeddings
WizMap - это масштабируемый интерактивный инструмент визуализации, который поможет вам легко исследовать эмбеддинги.
🖥 Github: https://github.com/poloclub/wizmap
⭐️ Colab: https://colab.research.google.com/drive/1GNdmBnc5UA7OYBZPtHu244eiAN-0IMZA?usp=sharing
📕 Paper: https://arxiv.org/abs/2306.09328v1
🔗 Web demo: https://poloclub.github.io/wizmap.
ai_machinelearning_big_data
WizMap - это масштабируемый интерактивный инструмент визуализации, который поможет вам легко исследовать эмбеддинги.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤18👍8🔥3🌚1
📌 LOMO: LOw-Memory Optimization
New optimizer, LOw-Memory Optimization enables the full parameter fine-tuning of a 7B model on a single RTX 3090, or a 65B model on a single machine with 8×RTX 3090, each with 24GB memory.
Новый оптимизатор, LOw-Memory Optimization (LOMO), который объединяет вычисление градиента и обновление параметров в один шаг для уменьшения использования памяти. Интегрируя LOMO с существующими методами экономии памяти, можно сократить использование памяти до 10,8% по сравнению со стандартным подходом (решение DeepSpeed).
🖥 Github: https://github.com/OpenLMLab/LOMO/tree/main
📕 Paper: https://arxiv.org/pdf/2306.09782.pdf
🔗 Dataset: https://paperswithcode.com/dataset/superglue
ai_machinelearning_big_data
New optimizer, LOw-Memory Optimization enables the full parameter fine-tuning of a 7B model on a single RTX 3090, or a 65B model on a single machine with 8×RTX 3090, each with 24GB memory.
Новый оптимизатор, LOw-Memory Optimization (LOMO), который объединяет вычисление градиента и обновление параметров в один шаг для уменьшения использования памяти. Интегрируя LOMO с существующими методами экономии памяти, можно сократить использование памяти до 10,8% по сравнению со стандартным подходом (решение DeepSpeed).
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥5❤4🗿2
Jumanji: a Diverse Suite of Scalable Reinforcement Learning Environments in JAX
Jumanji is helping pioneer a new wave of hardware-accelerated research and development in the field of RL.
Jumanji, набор моделей для задач RL, специально разработанных для быстрых, гибких и масштабируемого решения. Jumanji предоставляет набор моделей, ориентированных на комбинаторные проблемы, часто встречающиеся в промышленности, а также на сложные общие задачи принятия решений.
🖥 Github: https://github.com/instadeepai/jumanji
📕 Paper: https://arxiv.org/abs/2306.09884v1
🔗 Dataset: https://paperswithcode.com/dataset/mujoco
ai_machinelearning_big_data
Jumanji is helping pioneer a new wave of hardware-accelerated research and development in the field of RL.
Jumanji, набор моделей для задач RL, специально разработанных для быстрых, гибких и масштабируемого решения. Jumanji предоставляет набор моделей, ориентированных на комбинаторные проблемы, часто встречающиеся в промышленности, а также на сложные общие задачи принятия решений.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥2❤1
REBEL: Relation Extraction By End-to-end Language generation
REBEL is a seq2seq model that simplifies Relation Extraction.
Модель, позволяющая извлекать триплеты из данных с аннотированной бд, охватывающуей 18 языков 40 миллионов экземпляров триплетов.
🖥 Github: https://github.com/Babelscape/rebel
⭐️ Demo: https://huggingface.co/spaces/Babelscape/rebel-demo
⭐️ Hugging face: https://huggingface.co/Babelscape/rebel-large
📕 Paper: https://arxiv.org/abs/2306.09802v1
🔗 Dataset: https://huggingface.co/Babelscape/rebel-large
ai_machinelearning_big_data
REBEL is a seq2seq model that simplifies Relation Extraction.
Модель, позволяющая извлекать триплеты из данных с аннотированной бд, охватывающуей 18 языков 40 миллионов экземпляров триплетов.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤3🔥3
Multi-Modality Arena
Multi-Modality Arena is an evaluation platform for large multi-modality models.
Multi-Modality Arena - это платформа для оценки больших мультимодальных моделей. Multi-Modality Arena позволяет проводить сравнительный анализ моделей, данных, используя изображения в качестве входных данных. Поддерживает MiniGPT-4, LLaMA-Adapter V2, LLaVA, BLIP-2 и многие другие!
🖥 Github: https://github.com/opengvlab/multi-modality-arena
⭐️ Demo: http://vlarena.opengvlab.com/
📕 Paper: https://arxiv.org/abs/2306.09265v1
🔗 Dataset: https://paperswithcode.com/dataset/vsr
ai_machinelearning_big_data
Multi-Modality Arena is an evaluation platform for large multi-modality models.
Multi-Modality Arena - это платформа для оценки больших мультимодальных моделей. Multi-Modality Arena позволяет проводить сравнительный анализ моделей, данных, используя изображения в качестве входных данных. Поддерживает MiniGPT-4, LLaMA-Adapter V2, LLaVA, BLIP-2 и многие другие!
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍4🔥3