Machinelearning – Telegram
383K subscribers
4.46K photos
862 videos
17 files
4.9K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🔥 Подборка каналов для Дата сайентиста

🖥 Machine learning

datasc - Data science в телеграм!
@bigdatai - Big Data

@machinelearning_ru – гайды по машинному обучению
@machinelearning_interview – подготовка к собеседованию мл.
@datascienceiot – бесплатные книги ds
@ArtificialIntelligencedl – ИИ

@machinee_learning – чат о машинном обучении
@datascienceml_jobs - вакансии ds, ml
@Machinelearning_Jobs - чат с вакансиями

#️⃣ c# c++
C# - погружение в C#
@csharp_cplus чат
С++ - обучающий канал по C++.
@csharp_1001_notes - инструменты C#

🖥 SQL базы данных

@sqlhub - Повышение эффективности кода с грамотным использованием бд.
@chat_sql - чат изучения бд.

👣 Golang
@Golang_google - восхитительный язык от Google, мощный и перспективный.
@golang_interview - вопросы и ответы с собеседований по Go. Для всех уровней разработчиков.
@golangtests - интересные тесты и задачи GO
@golangl - чат изучающих Go
@GolangJobsit - отборные вакансии и работа GO
@golang_jobsgo - чат для ищущих работу.
@golang_books - полезные книги Golang
@golang_speak - обсуждение языка Go
@golangnewss - новости go

🖥 Linux
linux - kali linux ос для хакинга
linux chat - чат linux для обучения и помощи.
@linux_read - бесплатные книги linux

🖥 Python

@pythonl - главный канал самого популярного языка программирования.
@pro_python_code – учим python с ментором.
@python_job_interview – подготовка к Python собеседованию.
@python_testit - проверочные тесты на python
@pythonlbooks - современные книги Python
@python_djangojobs - работа для Python программистов
@python_django_work - чат обсуждения вакансий

🖥 Javanoscript / front

@react_tg - - 40,14% разработчиков сайтов использовали React в 2022 году - это самая популярная библиотека для создания сайтов.
@javanoscript -канал для JS и FrontEnd разработчиков. Лучшие практики и примеры кода. Туториалы и фишки JS
@Js Tests - каверзные тесты JS
@hashdev - погружение в web разработку.
@javanoscriptjobjs - отборные вакансии и работа FrontEnd.
@jsspeak - чат поиска FrontEnd работы.

🖥 Java
@javatg - выучить Java с senior разработчиком на практике
@javachats - чат для ответов на вопросы по Java
@java_library - библиотека книг Java
@android_its - Android разработка
@java_quizes - тесты Java
@Java_workit - работа Java
@progersit - шпаргалки ит

👷‍♂️ IT работа

https://news.1rj.ru/str/addlist/_zyy_jQ_QUsyM2Vi -ит каналы по яп с вакансиями

🤡It memes
@memes_prog - ит-мемы

⚙️ Rust
@rust_code - Rust избавлен от болевых точек, которые есть во многих современных яп
@rust_chats - чат rust

📓 Книги

https://news.1rj.ru/str/addlist/HwywK4fErd8wYzQy - актуальные книги по всем яп

⭐️ Нейронные сети
@vistehno - chatgpt ведет блог, решает любые задачи и отвечает на любые ваши вопросы.
@aigen - сети для генерации картинок. видео, музыки и многого другого.
@neural – погружение в нейросети.

📢 English for coders

@english_forprogrammers - Английский для программистов

🖥 Devops
Devops - канал для DevOps специалистов.
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍3👏2🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🌐 WizMap: Scalable Interactive Visualization for Exploring Large Machine Learning Embeddings

WizMap - это масштабируемый интерактивный инструмент визуализации, который поможет вам легко исследовать эмбеддинги.

🖥 Github: https://github.com/poloclub/wizmap

⭐️ Colab: https://colab.research.google.com/drive/1GNdmBnc5UA7OYBZPtHu244eiAN-0IMZA?usp=sharing

📕 Paper: https://arxiv.org/abs/2306.09328v1

🔗 Web demo: https://poloclub.github.io/wizmap.

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
18👍8🔥3🌚1
📌 LOMO: LOw-Memory Optimization

New optimizer, LOw-Memory Optimization enables the full parameter fine-tuning of a 7B model on a single RTX 3090, or a 65B model on a single machine with 8×RTX 3090, each with 24GB memory.

Новый оптимизатор, LOw-Memory Optimization (LOMO), который объединяет вычисление градиента и обновление параметров в один шаг для уменьшения использования памяти. Интегрируя LOMO с существующими методами экономии памяти, можно сократить использование памяти до 10,8% по сравнению со стандартным подходом (решение DeepSpeed).

🖥 Github: https://github.com/OpenLMLab/LOMO/tree/main

📕 Paper: https://arxiv.org/pdf/2306.09782.pdf

🔗 Dataset: https://paperswithcode.com/dataset/superglue

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥54🗿2
Jumanji: a Diverse Suite of Scalable Reinforcement Learning Environments in JAX

Jumanji is helping pioneer a new wave of hardware-accelerated research and development in the field of RL.

Jumanji, набор  моделей для задач RL, специально разработанных для быстрых, гибких и масштабируемого решения. Jumanji предоставляет набор моделей, ориентированных на комбинаторные проблемы, часто встречающиеся в промышленности, а также на сложные общие задачи принятия решений.

🖥 Github: https://github.com/instadeepai/jumanji

📕 Paper: https://arxiv.org/abs/2306.09884v1

🔗 Dataset: https://paperswithcode.com/dataset/mujoco

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥21
REBEL: Relation Extraction By End-to-end Language generation

REBEL is a seq2seq model that simplifies Relation Extraction
.

Модель, позволяющая извлекать триплеты из данных с аннотированной бд, охватывающуей 18 языков 40 миллионов экземпляров триплетов.

🖥 Github: https://github.com/Babelscape/rebel

⭐️Demo: https://huggingface.co/spaces/Babelscape/rebel-demo

⭐️ Hugging face: https://huggingface.co/Babelscape/rebel-large

📕 Paper: https://arxiv.org/abs/2306.09802v1

🔗Dataset: https://huggingface.co/Babelscape/rebel-large

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍123🔥3
Multi-Modality Arena

Multi-Modality Arena is an evaluation platform for large multi-modality models.

Multi-Modality Arena - это платформа для оценки больших мультимодальных моделей. Multi-Modality Arena позволяет проводить сравнительный анализ моделей, данных, используя изображения в качестве входных данных. Поддерживает MiniGPT-4, LLaMA-Adapter V2, LLaVA, BLIP-2 и многие другие!

🖥 Github: https://github.com/opengvlab/multi-modality-arena

⭐️ Demo: http://vlarena.opengvlab.com/

📕 Paper: https://arxiv.org/abs/2306.09265v1

🔗Dataset: https://paperswithcode.com/dataset/vsr

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍4🔥3
Fine-tuning MMS Adapter Models for Multi-Lingual ASR

MMS' Adapter training is both more memory efficient, more robust and yields better performance for low-resource languages.

Пример с кодом по настройке адаптера, при котором достигается поразительно низкий уровень ошибок в словах всего за 10-20 минут файнтюнинга.

Обучение адаптера MMS является более экономичным, более надежным и обеспечивает высокую производительность.

🤗 Post: https://huggingface.co/blog/mms_adapters

🖥 Colab: https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_MMS_on_Common_Voice.ipynb

🖥 Github: https://github.com/facebookresearch/fairseq/tree/main/examples/mms/asr

⭐️ Demo: https://huggingface.co/spaces/facebook/MMS

📕 Paper: https://huggingface.co/papers/2305.13516

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍93🔥2
Какую альтернативу Vendor-Lock использовать для клиентской аналитики?

Это один из главных вопросов, которые встали перед командой X5 Tech в 2022 году.

О том, как IT-компания, которая обеспечивает цифровые нужды ритейлера, нашла и быстро внедрила новое решение для предоставления клиентской аналитики в режиме реального времени на базе open-source технологий Clickhouse и Redis, команда расскажет на митапе 27 июня.

🔹 В онлайн формате выступят спикеры компании:

Ермаченков Владимир, менеджер направления клиентской аналитики в цифровых каналах

Бассай Сергей, архитектор данных

Гундилович Александр, старший разработчик

🔔 Старт в 18:00
Регистрация и подробности тут
Участие бесплатное
2👍2👏1
🚀 Fast Segment Anything

Fast Segment Anything Model reaches comparable performance with the SAM method at 50 times higher run-time speed.

Fast Segment Anything Model (FastSAM) - это модель CNN Segment Anything Model, обученная всего на 2% набора данных SA-1B, опубликованного авторами SAM. FastSAM достигает сравнимой с методом SAM производительности при 50-кратном увеличении скорости выполнения.

git clone https://github.com/CASIA-IVA-Lab/FastSAM.git

🖥 Github: https://github.com/casia-iva-lab/fastsam

⭐️ Demo:https://huggingface.co/spaces/An-619/FastSAM

📕 Paper: https://arxiv.org/pdf/2306.12156.pdf

🔗Dataset: https://paperswithcode.com/dataset/sa-1b

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍10🔥7
⭐️ LMFlow: An Extensible Toolkit for Finetuning and Inference of Large Foundation Models

Extensible and lightweight toolkit, LMFlow, which aims to simplify the finetuning and inference of general large foundation models.


Расширяемый, удобный и эффективный инструментарий для тонкой настройки больших моделей машинного обучения, разработанный как удобный, быстрый, надежный инструент для работы с большими моделями.

🖥 Github: https://github.com/optimalscale/lmflow

⭐️ Demo: https://lmflow.com/

📕 Paper: https://arxiv.org/abs/2306.12420v1

🔗Dataset: https://paperswithcode.com/dataset/pubmedqa

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍97🔥3
🦾 Rofunc: The Full Process Python Package for Robot Learning from Demonstration and Robot Manipulation

A pre-trained soft object manipulation skill learning model, namely SoftGPT, that is trained using large amounts of exploration data, consisting of a three-dimensional heterogeneous graph representation and a GPT-based dynamics model.

Полный набор инструментов Python для обучения роботов на основе имитационного обучения и обучения роботов путем демонстрации.

pip install rofunc

import rofunc as rf
import numpy as np
from isaacgym import gymutil
from importlib_resources import files

# Demo
raw_demo_l = np.load(files('rofunc.data.RAW_DEMO').joinpath('taichi_raw_l.npy'))
raw_demo_r = np.load(files('rofunc.data.RAW_DEMO').joinpath('taichi_raw_r.npy'))
demos_x_l = [raw_demo_l[300:435, :], raw_demo_l[435:570, :], raw_demo_l[570:705, :]]
demos_x_r = [raw_demo_r[300:435, :], raw_demo_r[435:570, :], raw_demo_r[570:705, :]]
rf.lqt.plot_3d_bi(demos_x_l, demos_x_r, ori=False, save=False)

# TP-GMM
show_demo_idx = 1
_, _, gmm_rep_l, gmm_rep_r = rf.tpgmm.bi(demos_x_l, demos_x_r, show_demo_idx=show_demo_idx, plot=True)

🖥 Github: https://github.com/skylark0924/rofunc

📕 Paper: https://arxiv.org/abs/2306.12677v1

🔗Dataset: https://paperswithcode.com/dataset/plasticinelab

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥2🥰1💯1🙊1
🔥 Awesome-Multimodal-Large-Language-Models

Latest Papers and Datasets on Multimodal Large Language Models, and Their Evaluation.

Огромный, упорядоченный список новейших статей, датасетов и кода по мультимодальным большим языковым моделям.

🖥 Github: https://github.com/bradyfu/awesome-multimodal-large-language-models

📕 Paper: https://arxiv.org/abs/2306.13394v1

🔗Dataset: https://paperswithcode.com/dataset/coco

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16🔥51
LightGlue. Local Feature Matching at Light Speed

LightGlue a lightweight feature matcher with high accuracy and adaptive pruning techniques, both in the width and depth of the network, for blazing fast inference.

LightGlue, глубокая нейронная сеть, которая учится сопоставлять локальные фичи на изображениях.

git clone https://github.com/cvg/LightGlue.git && cd LightGlue
python -m pip install -e .


🖥 Github: https://github.com/cvg/lightglue

📕 Paper: https://arxiv.org/abs/2306.13643v1

🔗Dataset: https://paperswithcode.com/dataset/hpatches

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
13🔥5👍3
Зачем Data-инженеру Spark

В Почте Mail.ru работают со стеком Hadoop, Hive, Clickhouse, Spark. В данной статье на Хабре Data-инженер из команды Почты Mail.Ru остановился на некоторых аспектах работы с данными в Spark.

Он ответил на следующие вопросы: как превратить 7 петабайт в 0,5 петабайт, что позволило сэкономить годовой бюджет по закупке серверов и построить своё классное хранилище без последующей переделки.

Также в статье: архитектурные паттерны в хранилище Почты, эффективное хранилище данных, форматы хранения данных, параллельная обработка данных в Spark, запись колоночных файлов, запросы к данным в Spark и др.

Хабр: https://habr.com/ru/companies/vk/articles/742084/

ai_machinelearning_big_data
👍7🔥21
🚶‍♂️ MotionGPT: Human Motion
as Foreign Language


MotionGPT consists of a motion tokenizer responsible for converting raw motion data into discrete motion tokens, as well as a motion-aware language model that learns to understand the motion tokens from large language pre-training models by corresponding textual denoscriptions.

MotionGPT, унифицированная, универсальная и удобная модель языка движения для решения множества задач, связанных с движением.

Project: https://motion-gpt.github.io/

🖥 Github: https://github.com/openmotionlab/motiongpt

📕 Paper: https://arxiv.org/pdf/2306.14795.pdf

🔗Dataset: https://paperswithcode.com/dataset/amass

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍51🤯1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥62
💬 3D-Speaker: A Large-Scale Multi-Device, Multi-Distance, and Multi-Dialect Corpus for Speech Representation Disentanglement

A large-scale speech corpus to facilitate the research of speech representation disentanglement.

3D-Speaker - это набор инструментов с открытым исходным кодом и крупномасштабный корпус речи, для мультимодальной проверки дикторов, распознавания дикторов и разделение дикторов.

3D-Speaker содержит более 10 000 дикторов, каждый из которых одновременно записывается несколькими устройствами, расположенными на разных расстояниях, а некоторые дикторы говорят на нескольких диалектах.

🖥 Github: https://github.com/alibaba-damo-academy/3D-Speaker

📕 Paper: https://arxiv.org/abs/2306.15354v1

🔗Dataset: https://3dspeaker.github.io/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥53👍2
📕 Constrained-Text-Generation-Studio

AI writing assistant for recreational linguists, poets, creative writers, and/or researchers to use and study the ability of large-scale language models.

Это как Photoshop, но для создания текстового контента!

Продвинутый ИИ-помощник по написанию текстов и генерированию текста.


🖥 Github: https://github.com/hellisotherpeople/constrained-text-generation-studio

📕 Paper: https://arxiv.org/abs/2306.15926v1

🔗Dataset: https://huggingface.co/datasets/Hellisotherpeople/Lipogram-e

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥54❤‍🔥1