Machinelearning – Telegram
383K subscribers
4.45K photos
858 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🚀 Introducing IDEFICS: An Open Reproduction of State-of-the-Art Visual Language Model

An open-access visual language model. IDEFICS is based on Flamingo, a state-of-the-art visual language model initially developed by DeepMind, which has not been released publicly.

IDEFICS - это модель с открытым доступом визуального языка , разработанной компанией Deepmind. Как и GPT-4, мультимодальная модель принимает на вход произвольные последовательности изображений и текстов и выдает на выходе текст. IDEFICS построена исключительно на основе общедоступных данных и моделей.

Модель может отвечать на вопросы об изображениях, описывать визуальное содержимое, создавать истории на основе нескольких изображений или просто вести себя как чистая языковая модель.

☑️ Model: https://huggingface.co/HuggingFaceM4/idefics-80b-instruct

🖥 Github: https://github.com/huggingface/blog/blob/main/idefics.md

⭐️ Demo: https://huggingface.co/spaces/HuggingFaceM4/idefics_playground

🤗 HF: https://huggingface.co/WizardLM

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍5🔥3
💡 Sentence-Level Multimodal and Language-Agnostic Representations

SONAR, a new multilingual and multimodal fixed-size sentence embedding space.

Новый Текстовый кодер-декодер от Meta, охватывающий 200 языков, который существенно превосходит существующие модели.

🖥 Github: https://github.com/facebookresearch/sonar

📕 Paper: https://arxiv.org/pdf/2308.11466v1.pdf

⭐️ Demo: https://github.com/facebookresearch/sonar#usage

☑️ Dataset: https://paperswithcode.com/dataset/common-voice

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥42🤬1
🤖Стартовала конференция по кибербезопасности OFFZONE 2023

Организатором мероприятия выступает партнер Сбера компания BI.ZONE. 24-25 августа более 110 спикеров расскажут о быстроменяющемся ландшафте кибербезопасности с экскурсом в историю за последние 10 лет, поделятся важными знаниями и лайфхаками для безопасников.

Также BI.ZONE представит итоги работы собственной платформы Bug Bounty. Помимо этого, будут работать прикладные воркшопы, где профессионалы с многолетним опытом расскажут о технологиях COM и подходах к исследованию Windows, применении ИИ для защиты информации и многом другом. Участникам конференции будет доступна секция о безопасности приложений, где покажут наглядно, как искать необычные уязвимости.

В AntiFraud.Zone обсудят вопросы банковской безопасности и борьбы с финансовыми преступлениями, как бороться с новыми видами атак и превентивно реагировать на угрозы, как устроен мошеннический кол‑центр и что нового появилось в антифрод‑системах за последние несколько лет.

ai_machinelearning_big_data
👍7🔥21
prompt2model - Generate Deployable Models from Instructions

prompt2model - Generate Deployable Models from Natural Language Instructions


Prompt2Model - это система, которая на основе описания задачи на естественном языке (например, промптов, используемых в LLM, таких как ChatGPT) обучает небольшую специализированную модель, пригодную для быстрого развертывания.

pip install prompt2model

🖥 Github: https://github.com/neulab/prompt2model

📕 Paper: https://arxiv.org/abs/2308.12261v1

⭐️ Demo: https://github.com/facebookresearch/sonar#usage

☑️ Dataset: https://paperswithcode.com/dataset/mconala

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍165🔥5
👀 Как используют компьютерное зрение в промышленных роботах

Внедрение компьютерного на производстве важно, потому что оно помогает снизить риски для работников, автоматизируя опасные или монотонные задачи. Роботов учат распознавать объекты, оценивать параметры, проводить сложные анализы.

🤖 Яндекс тоже использует нейронные сети для своих складских роботов. А точнее систему сканирования на базе компьютерного зрения в серии роботов Яндекс Маркета: в роботе Spectro для проведения палетной инвентаризации на складах Маркета и в системе для определения положения коробок.

Руководитель группы разработки компьютерного зрения и бизнес-процессов на роботе Валерий Ильин расскажет об этом на хардовой конференции для экспертов по ML.

Это всего одна тема из всех докладов. Эксперты затронут генеративные модели, Research, NLP, Hardware, CV, RecSys, MLOps и Ecomm. Конференция Practical ML Conf пройдёт 7 сентября офлайн и онлайн. Регистрация — здесь.

ai_machinelearning_big_data
🔥12👍31🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
🏅MixSort

MixSort is the proposed baseline tracker in SportMOT.

Новая модель и датасет для трекинга спортивных сцен.


🖥 Github: https://github.com/MCG-NJU/MixSort

📕 Paper: https://arxiv.org/pdf/2304.05170.pdf

⭐️ SportsMOT: https://github.com/MCG-NJU/SportsMOT

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍144🔥4
Онлайн-конференция по большим данным от Х5 Tech

В программе:

🎯 Развитие команды аналитики в сервисе доставки из магазинов «Пятёрочка»: зарождение продукта, трудности, неудачные решения.

🎯 Как работает Data-спецназ X5 Tech, автоматизация А/Б тестирования в оффлайне и что делать математику в ритейле.

🎯 Необходимые инструменты мониторинга и управления, когда число IT-продуктов и ML-моделей исчисляется сотнями. Подходы к оптимизации распределения ресурсов и учет рисков.

🎯 Классический подход к проведению рекламы VS AdHoc-подход на основе эконометрической модели: ключевые факторы динамики трафика, влияние РК, оценка ROI и оптимизация затрат с помощью big data.

📅 31 августа, начало в 11:00
🌐 Формат - онлайн

Зарегистрироваться
👍43🔥2🥴2
🌄Scenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation

Novel semi-supervised image-to-image translation framework

Новый фреймворк для Автоматического высококачественного рендеринга аниме-сцен из сложных реальных изображений.


git clone https://github.com/Yuxinn-J/Scenimefy.git

🖥 Github: https://github.com/yuxinn-j/scenimefy

▶️ Project: https://yuxinn-j.github.io/projects/Scenimefy.html

📕 Paper: https://arxiv.org/abs/2308.12968v1

🚀 Demo: https://yuxinn-j.github.io/projects/Scenimefy.html

⭐️ Dataset: https://github.com/Yuxinn-J/Scenimefy#open_file_folder-anime-scene-dataset

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7🔥42😱1
🔥Dense Text-to-Image Generation with Attention Modulation

DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle dense captions while offering control over the scene layout.

DenseDiffusion - новый метод, адаптирующий предварительно обученную модель "текст-изображение",

С DenseDiffusion способен генерировать изображения, учитывая подробное описание, конкретной области изображения.


🖥 Github: https://github.com/naver-ai/densediffusion

📕 Paper: https://arxiv.org/abs/2308.12964v1

⭐️ Dataset: https://paperswithcode.com/dataset/coco

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥52
🦙Llama 2 learns to code

The models show state-of-the-art performance in Python, C++, Java, PHP, C#, TypeScript, and Bash.

Мощнейший ИИ-инструмент с открытым исходным кодом, для написания качественного кода Python и не только.

Примеры работы с codellama на скриншотах.

#!pip install git+https://github.com/huggingface/transformers.git@main acceleratefrom transformers

Hugging face
Github
Docs
Post

ai_machinelearning_big_data
👍256🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🔦Relighting Neural Radiance Fields with Shadow and Highlight Hints

В данной работе представлен новый подход к изменении освещенности объекта на основе небольшого набора неструктурированных фотографий объекта, освещенного движущимся точечным источником света, отличным от позиции обзора.

git clone https://github.com/iamNCJ/NRHints.git
cd NRHints
pip install -r requirements.txt

🖥 Github: https://github.com/iamNCJ/NRHints

🚀 Project: https://nrhints.github.io/

📕 Paper: https://nrhints.github.io/pdfs/nrhints-sig23.pdf

⭐️ Dataset: https://github.com/iamNCJ/NRHints#data-and-models

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍87🔥7
💻 В Москве прошла конференция по кибербезопасности OFFZONE 2023

Как мы уже писали ранее, конференцию провела компания BI.ZONE, партнер Сбера. В мероприятии поучаствовали безопасники, разработчики, исследователи, преподаватели и студенты технических вузов. Всего на ней выступили 108 экспертов, а общее число участников превысило 2500 человек.

О чем говорили на двух треках:

🔸как изменилась отрасль кибербезопасности за последние 10 лет;
🔸основные тренды кибермошенничества в финансовой сфере;
🔸лайфхаки в области mobile DevSecOps;
🔸необычные атаки с применением широко распространенных программ для удаленного управления;
и другое.

Также на площадке работали тематические зоны от специалистов по безопасности финансовых систем и банковской инфраструктуры, экспертов по безопасной разработке и анализу защищенности приложений, CTF.Zone и т.д.

Кроме того, в рамках OFFZONE 2023 прошла презентация об итогах года работы платформы BI.ZONE Bug Bounty. Так, на платформе зарегистрировались 17 компаний и 51 программа по поиску уязвимостей.

ai_machinelearning_big_data
👍6😁2🔥1
📌 SNARE (a multimodal alignment probing benchmark)

Scale multimodal alignment probing benchmark, to detect the vital linguistic components, e.g., lexical, semantic, and syntax knowledge,

Новый крупномасштабный мультимодальный бенчмарк, позволяющий обнаружить важные лингвистические компоненты в предварительно обученных моделях "vision-language ".

🖥 Github: https://github.com/wangfei-2019/snare

📕 Paper: https://arxiv.org/abs/2308.12898v2

⭐️ Dataset: https://paperswithcode.com/dataset/aro

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥64👍2