🚀 Introducing IDEFICS: An Open Reproduction of State-of-the-Art Visual Language Model
An open-access visual language model. IDEFICS is based on Flamingo, a state-of-the-art visual language model initially developed by DeepMind, which has not been released publicly.
IDEFICS - это модель с открытым доступом визуального языка , разработанной компанией Deepmind. Как и GPT-4, мультимодальная модель принимает на вход произвольные последовательности изображений и текстов и выдает на выходе текст. IDEFICS построена исключительно на основе общедоступных данных и моделей.
Модель может отвечать на вопросы об изображениях, описывать визуальное содержимое, создавать истории на основе нескольких изображений или просто вести себя как чистая языковая модель.
☑️ Model: https://huggingface.co/HuggingFaceM4/idefics-80b-instruct
🖥 Github: https://github.com/huggingface/blog/blob/main/idefics.md
⭐️ Demo: https://huggingface.co/spaces/HuggingFaceM4/idefics_playground
🤗 HF: https://huggingface.co/WizardLM
ai_machinelearning_big_data
An open-access visual language model. IDEFICS is based on Flamingo, a state-of-the-art visual language model initially developed by DeepMind, which has not been released publicly.
IDEFICS - это модель с открытым доступом визуального языка , разработанной компанией Deepmind. Как и GPT-4, мультимодальная модель принимает на вход произвольные последовательности изображений и текстов и выдает на выходе текст. IDEFICS построена исключительно на основе общедоступных данных и моделей.
Модель может отвечать на вопросы об изображениях, описывать визуальное содержимое, создавать истории на основе нескольких изображений или просто вести себя как чистая языковая модель.
🤗 HF: https://huggingface.co/WizardLM
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍5🔥3
💡 Sentence-Level Multimodal and Language-Agnostic Representations
SONAR, a new multilingual and multimodal fixed-size sentence embedding space.
Новый Текстовый кодер-декодер от Meta, охватывающий 200 языков, который существенно превосходит существующие модели.
🖥 Github: https://github.com/facebookresearch/sonar
📕 Paper: https://arxiv.org/pdf/2308.11466v1.pdf
⭐️ Demo: https://github.com/facebookresearch/sonar#usage
☑️ Dataset: https://paperswithcode.com/dataset/common-voice
ai_machinelearning_big_data
SONAR, a new multilingual and multimodal fixed-size sentence embedding space.
Новый Текстовый кодер-декодер от Meta, охватывающий 200 языков, который существенно превосходит существующие модели.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥4❤2🤬1
🤖Стартовала конференция по кибербезопасности OFFZONE 2023
Организатором мероприятия выступает партнер Сбера компания BI.ZONE. 24-25 августа более 110 спикеров расскажут о быстроменяющемся ландшафте кибербезопасности с экскурсом в историю за последние 10 лет, поделятся важными знаниями и лайфхаками для безопасников.
Также BI.ZONE представит итоги работы собственной платформы Bug Bounty. Помимо этого, будут работать прикладные воркшопы, где профессионалы с многолетним опытом расскажут о технологиях COM и подходах к исследованию Windows, применении ИИ для защиты информации и многом другом. Участникам конференции будет доступна секция о безопасности приложений, где покажут наглядно, как искать необычные уязвимости.
В AntiFraud.Zone обсудят вопросы банковской безопасности и борьбы с финансовыми преступлениями, как бороться с новыми видами атак и превентивно реагировать на угрозы, как устроен мошеннический кол‑центр и что нового появилось в антифрод‑системах за последние несколько лет.
ai_machinelearning_big_data
Организатором мероприятия выступает партнер Сбера компания BI.ZONE. 24-25 августа более 110 спикеров расскажут о быстроменяющемся ландшафте кибербезопасности с экскурсом в историю за последние 10 лет, поделятся важными знаниями и лайфхаками для безопасников.
Также BI.ZONE представит итоги работы собственной платформы Bug Bounty. Помимо этого, будут работать прикладные воркшопы, где профессионалы с многолетним опытом расскажут о технологиях COM и подходах к исследованию Windows, применении ИИ для защиты информации и многом другом. Участникам конференции будет доступна секция о безопасности приложений, где покажут наглядно, как искать необычные уязвимости.
В AntiFraud.Zone обсудят вопросы банковской безопасности и борьбы с финансовыми преступлениями, как бороться с новыми видами атак и превентивно реагировать на угрозы, как устроен мошеннический кол‑центр и что нового появилось в антифрод‑системах за последние несколько лет.
ai_machinelearning_big_data
👍7🔥2❤1
⚡prompt2model - Generate Deployable Models from Instructions
prompt2model - Generate Deployable Models from Natural Language Instructions
Prompt2Model - это система, которая на основе описания задачи на естественном языке (например, промптов, используемых в LLM, таких как ChatGPT) обучает небольшую специализированную модель, пригодную для быстрого развертывания.
🖥 Github: https://github.com/neulab/prompt2model
📕 Paper: https://arxiv.org/abs/2308.12261v1
⭐️ Demo: https://github.com/facebookresearch/sonar#usage
☑️ Dataset: https://paperswithcode.com/dataset/mconala
ai_machinelearning_big_data
prompt2model - Generate Deployable Models from Natural Language Instructions
Prompt2Model - это система, которая на основе описания задачи на естественном языке (например, промптов, используемых в LLM, таких как ChatGPT) обучает небольшую специализированную модель, пригодную для быстрого развертывания.
pip install prompt2modelai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤5🔥5
👀 Как используют компьютерное зрение в промышленных роботах
Внедрение компьютерного на производстве важно, потому что оно помогает снизить риски для работников, автоматизируя опасные или монотонные задачи. Роботов учат распознавать объекты, оценивать параметры, проводить сложные анализы.
🤖 Яндекс тоже использует нейронные сети для своих складских роботов. А точнее систему сканирования на базе компьютерного зрения в серии роботов Яндекс Маркета: в роботе Spectro для проведения палетной инвентаризации на складах Маркета и в системе для определения положения коробок.
Руководитель группы разработки компьютерного зрения и бизнес-процессов на роботе Валерий Ильин расскажет об этом на хардовой конференции для экспертов по ML.
Это всего одна тема из всех докладов. Эксперты затронут генеративные модели, Research, NLP, Hardware, CV, RecSys, MLOps и Ecomm. Конференция Practical ML Conf пройдёт 7 сентября офлайн и онлайн. Регистрация — здесь.
ai_machinelearning_big_data
Внедрение компьютерного на производстве важно, потому что оно помогает снизить риски для работников, автоматизируя опасные или монотонные задачи. Роботов учат распознавать объекты, оценивать параметры, проводить сложные анализы.
🤖 Яндекс тоже использует нейронные сети для своих складских роботов. А точнее систему сканирования на базе компьютерного зрения в серии роботов Яндекс Маркета: в роботе Spectro для проведения палетной инвентаризации на складах Маркета и в системе для определения положения коробок.
Руководитель группы разработки компьютерного зрения и бизнес-процессов на роботе Валерий Ильин расскажет об этом на хардовой конференции для экспертов по ML.
Это всего одна тема из всех докладов. Эксперты затронут генеративные модели, Research, NLP, Hardware, CV, RecSys, MLOps и Ecomm. Конференция Practical ML Conf пройдёт 7 сентября офлайн и онлайн. Регистрация — здесь.
ai_machinelearning_big_data
🔥12👍3❤1🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
🏅MixSort
MixSort is the proposed baseline tracker in SportMOT.
Новая модель и датасет для трекинга спортивных сцен.
🖥 Github: https://github.com/MCG-NJU/MixSort
📕 Paper: https://arxiv.org/pdf/2304.05170.pdf
⭐️ SportsMOT: https://github.com/MCG-NJU/SportsMOT
ai_machinelearning_big_data
MixSort is the proposed baseline tracker in SportMOT.
Новая модель и датасет для трекинга спортивных сцен.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14❤4🔥4
Онлайн-конференция по большим данным от Х5 Tech
В программе:
🎯 Развитие команды аналитики в сервисе доставки из магазинов «Пятёрочка»: зарождение продукта, трудности, неудачные решения.
🎯 Как работает Data-спецназ X5 Tech, автоматизация А/Б тестирования в оффлайне и что делать математику в ритейле.
🎯 Необходимые инструменты мониторинга и управления, когда число IT-продуктов и ML-моделей исчисляется сотнями. Подходы к оптимизации распределения ресурсов и учет рисков.
🎯 Классический подход к проведению рекламы VS AdHoc-подход на основе эконометрической модели: ключевые факторы динамики трафика, влияние РК, оценка ROI и оптимизация затрат с помощью big data.
📅 31 августа, начало в 11:00
🌐 Формат - онлайн
Зарегистрироваться
В программе:
🎯 Развитие команды аналитики в сервисе доставки из магазинов «Пятёрочка»: зарождение продукта, трудности, неудачные решения.
🎯 Как работает Data-спецназ X5 Tech, автоматизация А/Б тестирования в оффлайне и что делать математику в ритейле.
🎯 Необходимые инструменты мониторинга и управления, когда число IT-продуктов и ML-моделей исчисляется сотнями. Подходы к оптимизации распределения ресурсов и учет рисков.
🎯 Классический подход к проведению рекламы VS AdHoc-подход на основе эконометрической модели: ключевые факторы динамики трафика, влияние РК, оценка ROI и оптимизация затрат с помощью big data.
📅 31 августа, начало в 11:00
🌐 Формат - онлайн
Зарегистрироваться
👍4❤3🔥2🥴2
🌄Scenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation
Novel semi-supervised image-to-image translation framework
Новый фреймворк для Автоматического высококачественного рендеринга аниме-сцен из сложных реальных изображений.
🖥 Github: https://github.com/yuxinn-j/scenimefy
▶️ Project: https://yuxinn-j.github.io/projects/Scenimefy.html
📕 Paper: https://arxiv.org/abs/2308.12968v1
🚀 Demo: https://yuxinn-j.github.io/projects/Scenimefy.html
⭐️ Dataset: https://github.com/Yuxinn-J/Scenimefy#open_file_folder-anime-scene-dataset
ai_machinelearning_big_data
Novel semi-supervised image-to-image translation framework
Новый фреймворк для Автоматического высококачественного рендеринга аниме-сцен из сложных реальных изображений.
git clone https://github.com/Yuxinn-J/Scenimefy.git
🚀 Demo: https://yuxinn-j.github.io/projects/Scenimefy.html
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7🔥4❤2😱1
🔥Dense Text-to-Image Generation with Attention Modulation
DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle dense captions while offering control over the scene layout.
DenseDiffusion - новый метод, адаптирующий предварительно обученную модель "текст-изображение",
С DenseDiffusion способен генерировать изображения, учитывая подробное описание, конкретной области изображения.
🖥 Github: https://github.com/naver-ai/densediffusion
📕 Paper: https://arxiv.org/abs/2308.12964v1
⭐️ Dataset: https://paperswithcode.com/dataset/coco
ai_machinelearning_big_data
DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle dense captions while offering control over the scene layout.
DenseDiffusion - новый метод, адаптирующий предварительно обученную модель "текст-изображение",
С DenseDiffusion способен генерировать изображения, учитывая подробное описание, конкретной области изображения.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥5❤2
🦙Llama 2 learns to code
The models show state-of-the-art performance in Python, C++, Java, PHP, C#, TypeScript, and Bash.
Мощнейший ИИ-инструмент с открытым исходным кодом, для написания качественного кода Python и не только.
Примеры работы с codellama на скриншотах.
•Hugging face
•Github
•Docs
•Post
ai_machinelearning_big_data
The models show state-of-the-art performance in Python, C++, Java, PHP, C#, TypeScript, and Bash.
Мощнейший ИИ-инструмент с открытым исходным кодом, для написания качественного кода Python и не только.
Примеры работы с codellama на скриншотах.
#!pip install git+https://github.com/huggingface/transformers.git@main acceleratefrom transformers•Hugging face
•Github
•Docs
•Post
ai_machinelearning_big_data
👍25❤6🔥1
👨🎓The Best Courses for AI from Universities with YouTube Playlists
Лучшие курсы по искусственному интеллекту от топовых университетов мира.
Stanford University Courses
•CS221 - Artificial Intelligence: Principles and Techniques
•CS224U: Natural Language Understanding
•CS224n - Natural Language Processing with Deep Learning
•CS224w - Machine Learning with Graphs
•CS229 - Machine Learning
•CS230 - Deep Learning
•CS231n - Convolutional Neural Networks for Visual Recognition
•CS234 - Reinforcement Learning
•CS330 - Deep Multi-task and Meta-Learning
•CS25 - Transformers United
Carnegie Mellon University Courses
•CS 10-708: Probabilistic Graphical Models
•CS/LTI 11-711: Advanced NLP
•CS/LTI 11-737: Multilingual NLP
•CS/LTI 11-747: Neural Networks for NLP
•CS/LTI 11-777: Multimodal Machine Learning
•CS/LTI 11-785: Introduction to Deep Learning
•CS/LTI 11-785: Neural Networks
•CS/LTI Low Resource NLP
Massachusetts Institute of Technology Courses
•6.006 - Introduction to Algorithms
•6.S191 - Introduction to Deep Learning
•6.S094 - Deep Learning
•6.S192 - Deep Learning for Art, Aesthetics, and Creativity
DeepMind x UCL
•COMP M050 - Introduction to Reinforcement Learning
•Deep Learning Series
ai_machinelearning_big_data
Лучшие курсы по искусственному интеллекту от топовых университетов мира.
Stanford University Courses
•CS221 - Artificial Intelligence: Principles and Techniques
•CS224U: Natural Language Understanding
•CS224n - Natural Language Processing with Deep Learning
•CS224w - Machine Learning with Graphs
•CS229 - Machine Learning
•CS230 - Deep Learning
•CS231n - Convolutional Neural Networks for Visual Recognition
•CS234 - Reinforcement Learning
•CS330 - Deep Multi-task and Meta-Learning
•CS25 - Transformers United
Carnegie Mellon University Courses
•CS 10-708: Probabilistic Graphical Models
•CS/LTI 11-711: Advanced NLP
•CS/LTI 11-737: Multilingual NLP
•CS/LTI 11-747: Neural Networks for NLP
•CS/LTI 11-777: Multimodal Machine Learning
•CS/LTI 11-785: Introduction to Deep Learning
•CS/LTI 11-785: Neural Networks
•CS/LTI Low Resource NLP
Massachusetts Institute of Technology Courses
•6.006 - Introduction to Algorithms
•6.S191 - Introduction to Deep Learning
•6.S094 - Deep Learning
•6.S192 - Deep Learning for Art, Aesthetics, and Creativity
DeepMind x UCL
•COMP M050 - Introduction to Reinforcement Learning
•Deep Learning Series
ai_machinelearning_big_data
👍33🔥11❤9🤔2
This media is not supported in your browser
VIEW IN TELEGRAM
🔦Relighting Neural Radiance Fields with Shadow and Highlight Hints
В данной работе представлен новый подход к изменении освещенности объекта на основе небольшого набора неструктурированных фотографий объекта, освещенного движущимся точечным источником света, отличным от позиции обзора.
🖥 Github: https://github.com/iamNCJ/NRHints
🚀 Project: https://nrhints.github.io/
📕 Paper: https://nrhints.github.io/pdfs/nrhints-sig23.pdf
⭐️ Dataset: https://github.com/iamNCJ/NRHints#data-and-models
ai_machinelearning_big_data
В данной работе представлен новый подход к изменении освещенности объекта на основе небольшого набора неструктурированных фотографий объекта, освещенного движущимся точечным источником света, отличным от позиции обзора.
git clone https://github.com/iamNCJ/NRHints.git
cd NRHints
pip install -r requirements.txt
🚀 Project: https://nrhints.github.io/
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤7🔥7
💻 В Москве прошла конференция по кибербезопасности OFFZONE 2023
Как мы уже писали ранее, конференцию провела компания BI.ZONE, партнер Сбера. В мероприятии поучаствовали безопасники, разработчики, исследователи, преподаватели и студенты технических вузов. Всего на ней выступили 108 экспертов, а общее число участников превысило 2500 человек.
О чем говорили на двух треках:
🔸как изменилась отрасль кибербезопасности за последние 10 лет;
🔸основные тренды кибермошенничества в финансовой сфере;
🔸лайфхаки в области mobile DevSecOps;
🔸необычные атаки с применением широко распространенных программ для удаленного управления;
и другое.
Также на площадке работали тематические зоны от специалистов по безопасности финансовых систем и банковской инфраструктуры, экспертов по безопасной разработке и анализу защищенности приложений, CTF.Zone и т.д.
Кроме того, в рамках OFFZONE 2023 прошла презентация об итогах года работы платформы BI.ZONE Bug Bounty. Так, на платформе зарегистрировались 17 компаний и 51 программа по поиску уязвимостей.
ai_machinelearning_big_data
Как мы уже писали ранее, конференцию провела компания BI.ZONE, партнер Сбера. В мероприятии поучаствовали безопасники, разработчики, исследователи, преподаватели и студенты технических вузов. Всего на ней выступили 108 экспертов, а общее число участников превысило 2500 человек.
О чем говорили на двух треках:
🔸как изменилась отрасль кибербезопасности за последние 10 лет;
🔸основные тренды кибермошенничества в финансовой сфере;
🔸лайфхаки в области mobile DevSecOps;
🔸необычные атаки с применением широко распространенных программ для удаленного управления;
и другое.
Также на площадке работали тематические зоны от специалистов по безопасности финансовых систем и банковской инфраструктуры, экспертов по безопасной разработке и анализу защищенности приложений, CTF.Zone и т.д.
Кроме того, в рамках OFFZONE 2023 прошла презентация об итогах года работы платформы BI.ZONE Bug Bounty. Так, на платформе зарегистрировались 17 компаний и 51 программа по поиску уязвимостей.
ai_machinelearning_big_data
👍6😁2🔥1
📌 SNARE (a multimodal alignment probing benchmark)
Scale multimodal alignment probing benchmark, to detect the vital linguistic components, e.g., lexical, semantic, and syntax knowledge,
Новый крупномасштабный мультимодальный бенчмарк, позволяющий обнаружить важные лингвистические компоненты в предварительно обученных моделях "vision-language ".
🖥 Github: https://github.com/wangfei-2019/snare
📕 Paper: https://arxiv.org/abs/2308.12898v2
⭐️ Dataset: https://paperswithcode.com/dataset/aro
ai_machinelearning_big_data
Scale multimodal alignment probing benchmark, to detect the vital linguistic components, e.g., lexical, semantic, and syntax knowledge,
Новый крупномасштабный мультимодальный бенчмарк, позволяющий обнаружить важные лингвистические компоненты в предварительно обученных моделях "vision-language ".
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6❤4👍2