Machinelearning – Telegram
383K subscribers
4.45K photos
858 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
📷Improving Lens Flare Removal with General Purpose Pipeline and Multiple Light Sources Recovery

Новое решение по эффективному удаления бликов на изображениях и восстановления источников света.

🖥 Github: https://github.com/yuyanzhou1/improving-lens-flare-removal

🖥 Pre-trained Model: https://drive.google.com/drive/folders/1ngjUh6UzA99-XLi6esK9OdP7ORhU6i8R?usp=sharing

📕 Paper: https://arxiv.org/abs/2308.16460v1

⭐️ Dataset: https://paperswithcode.com/dataset/flare7k

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍114🔥2🍾2👏1
This media is not supported in your browser
VIEW IN TELEGRAM
👨‍🎓Data Science: Machine Learning

Build a movie recommendation system and learn the science behind one of the most popular and successful data science techniques.

Гарвардский университет предлагает курс "Машинное обучение" БЕСПЛАТНО!

В рамках этого курса вы создадите систему рекомендаций по фильмам и узнаете, что лежит в основе методов машинного обучения.

📌Course

ai_machinelearning_big_data
🔥316👍6🐳4🥴1
✅️ Point-Bind & Point-LLM: Aligning 3D with Multi-modality

Point-Bind is a 3D multi-modality model with a joint embedding space among 3D point cloud, image, language, audio, and video.

Point-LLM - это первая мультимодальная большая языковая модель, которая не требует ввода трехмерных объектов и учитывает мультимодальный ввод для генерации🌟

🖥 Github: https://github.com/ziyuguo99/point-bind_point-llm

Demo: http://imagebind-llm.opengvlab.com/

📕 Paper: https://arxiv.org/abs/2309.00615v1

⭐️ Dataset: https://paperswithcode.com/dataset/esc-50

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
12👍6🔥5👀1
🔥Master Data Science for free

Вторая большая подборка бесплатных курсов для получения степени в области Data Science.

📂 Computer Science 101
https://online.stanford.edu/courses/soe-ycscs101-computer-science-101

📂 Machine Learning Specialization
https://coursera.org/specializations/machine-learning-introduction

📂 Artificial Intelligence for Robotics
https://udacity.com/course/artificial-intelligence-for-robotics--cs373

📂 Designing Your Career
https://online.stanford.edu/courses/tds-y0003-designing-your-career

📂 Stanford: Теория игр
https://online.stanford.edu/courses/soe-ycs0002-game-theory

📂 Machine Learning with Python
https://www.freecodecamp.org/learn/machine-learning-with-python/

📂 Probability and Statistics: To P or Not To P? (Coursera)
https://www.coursera.org/learn/probability-statistics

📂 Numpy полный бесплатный курс
https://www.youtube.com/playlist?list=PLysMDSbb9Hcz3Gdi9oV-btohZ9zhths-r

📂Углубленное машинное обучение
https://www.kaggle.com/learn/intro-to-machine-learning

📂 Stat 110: Harvard University (YouTube)
https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=1

📂 The Open Source Data Science Masters
https://github.com/datasciencemasters/go

📂 Google - искусственный интеллект для всех
https://edx.org/learn/artificial-intelligence/google-google-ai-for-anyone

📂Microsoft - ИИ для начинающих
https://microsoft.github.io/AI-For-Beginners

📂 IBM - AI for Everyone: Освоить основы
https://edx.org/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics

📂 Гарвард - Введение в искусственный интеллект с помощью Python
https://cs50.harvard.edu/ai/2023

📂 Введение в генеративный ИИ
https://cloudskillsboost.google/journeys/118

📂 Deep Learning - Finetuning Large Language Models
https://deeplearning.ai/short-courses/finetuning-large-language-models/

📂Microsoft - Основы ИИ в Azure
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/

📂Linux Foundation - Основы работы с данными и искусственным интеллектом
https://edx.org/learn/computer-programming/the-linux-foundation-data-and-ai-fundamentals

📂12 linux курсов:
https://news.1rj.ru/str/linuxkalii/538

📂 Alison - 13 бесплатных курсов по ИИ
https://alison.com/tag/artificial-intelligence

📂 Проекты по искусственному интеллекту
https://mygreatlearning.com/academy/learn-for-free/courses/artificial-intelligence-projects

📂 Introduction to Internet of Things:
https://online.stanford.edu/courses/xee100-introduction-internet-things

📂 Graph Search, Shortest Paths, and Data Structures
https://coursera.org/learn/algorithms-graphs-data-structures

📂 Python:
http://cs50.harvard.edu/python/2022/

📂 Machine Learning:
http://developers.google.com/machine-learning/crash-course

📂 Deep Learning
http://introtodeeplearning.com

📂 Data Analysis
http://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis

📂 Линейная Алгебра
http://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra

📂 Algebra basics
https://www.khanacademy.org/math/algebra-basics

📂 Excel и PowerBI
http://learn.microsoft.com/training/paths/modern-analytics/

📂 Визуализация данных:
http://pll.harvard.edu/course/data-science-visualization

📂 PowerBI
http://learn.microsoft.com/users/collinschedler-0717/collections/m14nt4rdwnwp04

📂 Tableau:
http://tableau.com/learn/training

📂 Statistics:
http://cognitiveclass.ai/courses/statistics-101

📂 SQL:
http://online.stanford.edu/courses/soe-ydatabases0005-databases-relational-databases-and-sql

ai_machinelearning_big_data
👍28🔥138👏2🥱1
🌐 Сервис GigaChat от Сбера имеет большие перспективы как в России, так и в других странах мира

Об этом заявил директор Российской ассоциации электронных коммуникаций (РАЭК) Сергей Гребенников.

По словам эксперта, сегодня с текстом и изображениями работают многие диджитал-специалисты — сервис позволит им повысить скорость работы и вдохновит новые идеи. При этом Гребенников отметил, что сервис, благодаря пользователям, и сам сможет быстрее развиваться.

«Здорово, что инновационные инструменты становятся доступны широкой аудитории: как показывает практика, пользователи помогают компаниям совершенствовать продукты и генерировать новые подходы к их развитию. Это крайне важно в современной гонке технологий. Уверен, что Сбер продолжит и дальше развивать функционал GigaChat, а также создавать новые продукты на основе технологий ИИ», — подчеркнул он.

📌 Источник

ai_machinelearning_big_data
🤣31👍13🗿42🌭2🤪2🔥1🥴1😐1🖕1
🦅 Falcon 180B is here!

In terms of capabilities, Falcon 180B achieves state-of-the-art results across natural language tasks. It tops the leaderboard for (pre-trained) open-access models and rivals proprietary models like PaLM-2.

Falcon 180B устанавливает новый уровень для открытых моделей. Это самая большая открытая языковая модель со 180 миллиардами параметров, которая была обучена на огромном массиве данных TII RefinedWeb, насчитывающем 3,5 триллиона лексем. Это самый продолжительный период предварительного обучения открытой модели на одной эпохе.

🤗 HF: https://huggingface.co/blog/falcon-180b

🖥 Github: https://github.com/huggingface/blog/blob/main/falcon-180b.md

📕 Demo: https://huggingface.co/spaces/tiiuae/falcon-180b-demo

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24🤯7🔥64🖕1
This media is not supported in your browser
VIEW IN TELEGRAM
🧑 ReliTalk - Drive any portrait with only a single training video required

Vivid audio-driven portraits from monocular videos.

Новый фреймворк для создания реалистичных, говорящих портретов на основе видео.

🖥 Github: https://github.com/arthur-qiu/ReliTalk

📕 Paper: https://arxiv.org/abs/2309.02434

Demo Video: https://www.youtube.com/watch?v=tS2Tek_72J0

⭐️ Project: http://haonanqiu.com/projects/ReliTalk.html

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9👍631🖕1
Сегодня на конференции Practical ML Conf Яндекс анонсировал новую версию YandexGPT2 – ее ответы на 67% лучше предыдущей версии. Специалисты дополнили набор данных новыми примерами запросов и синтетическими данными.

Новая версия языковой модели также может писать тексты в нужном стиле, обрабатывать запросы пользователей с множеством условий, предлагать креативные идеи и неплохо шутить

Протестировать YandexGPT2 можно в навыке Алисы “Давай придумаем”
🖕13👍731🔥1
📈GPT-InvestAR

Enhancing Stock Investment Strategies through Annual Report Analysis with Large Language Models.

Этот репозиторий содержит набор инструментов и скриптов, предназначенных для улучшения стратегий инвестирования в акции посредством анализа годовых отчетов с использованием больших языковых моделей.

🖥 Github: https://github.com/UditGupta10/GPT-InvestAR

📕 Paper: https://arxiv.org/abs/2309.03079v1

⭐️ llama-index: https://github.com/jerryjliu/llama_index

ai_machinelearning_big_dataп
Please open Telegram to view this post
VIEW IN TELEGRAM
👍244🔥3
SyntheticHumans Package (Unity Computer Vision)

A package for creating Unity Perception compatible synthetic people.

Модель для генерации людей, обученная на большом наборе антропоцентрических измерений, которая способна генерировать широкий спектр форм и поз человеческого тела.


🖥 Github: https://github.com/Unity-Technologies/com.unity.cv.synthetichumans

📂 AnthroNet: https://github.com/Unity-Technologies/AnthroNet

📕 Paper:https://arxiv.org/abs/2309.03812v1

⭐️ Dataset: https://paperswithcode.com/dataset/unity-synthetic-humans

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🥰3🔥21🥱1
Легкий способ получать свежие обновлении и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

Data Science: t.me/data_analysis_ml
Java: t.me/javatg
Базы данных: t.me/sqlhub
Машинное обучение: t.me/machinelearning_ru
Go: t.me/Golang_google
C/C++/ t.me/cpluspluc
C#: t.me/csharp_ci
Хакинг: t.me/linuxkalii
Мобильная разработка: t.me/mobdevelop
Docker: t.me/+0WdB4uvOwCY0Mjdi
Python: t.me/pythonl
Rust: t.me/rust_code
Javanoscript: t.me/javanoscriptv
React: t.me/react_tg
PHP: t.me/phpshka
Android: t.me/android_its
Linux: t.me/+A8jY79rcyKJlYWY6
Big Data: t.me/bigdatai
Devops: t.me/devOPSitsec
Тестирование:https://news.1rj.ru/str/+F9jPLmMFqq1kNTMy
Собеседования: https://news.1rj.ru/str/machinelearning_interview

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://news.1rj.ru/str/addlist/2Ls-snqEeytkMDgy

😆ИТ-Мемы: t.me/memes_prog

🇬🇧Английский: t.me/english_forprogrammers

ИИ: t.me/vistehno

📕Ит-книги бесплатно: https://news.1rj.ru/str/addlist/BkskQciUW_FhNjEy
👍6🖕52🔥2👏1🥱1
💻PyGraft: Configurable Generation of Schemas and Knowledge Graphs at Your Fingertips

PyGraft - инструмент на базе Python, позволяющий генерировать специализированные схемы и графы знаний, не зависящие от конкретной области.

🖥 Github: https://github.com/nicolas-hbt/pygraft

📕 Paper: https://arxiv.org/abs/2309.03685

⭐️ Docs: https://pygraft.readthedocs.io/en/latest/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
15👍12🔥2🥱1
Media is too big
VIEW IN TELEGRAM
📹 DEVA: Tracking Anything with Decoupled Video Segmentation

Decoupled video segmentation approach (DEVA), composed of task-specific image-level segmentation and class/task-agnostic bi-directional temporal propagation.

Новая модель сегментации видео для "отслеживания чего угодно" без обучения по видео для любой отдельной задачи.

🖥 Github: https://github.com/hkchengrex/Tracking-Anything-with-DEVA

🖥 Colab: https://colab.research.google.com/drive/1OsyNVoV_7ETD1zIE8UWxL3NXxu12m_YZ?usp=sharing

Project: https://hkchengrex.github.io/Tracking-Anything-with-DEVA/

📕 Paper: https://arxiv.org/abs/2309.03903v1

⭐️ Docs: https://paperswithcode.com/dataset/burst

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21🔥82🌚2
🎯 DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models

Фреймворк для уменьшения галлюцинаций с помощью предварительно обученных ЛЛМ, не требующая ни файнтюнинга.

🖥 Github: https://github.com/voidism/dola

🖥 Colab: https://colab.research.google.com/github/voidism/DoLa/blob/master/dola_evaluation.ipynb

📕 Paper: https://arxiv.org/abs/2309.03883v1

⭐️ Dataset: https://paperswithcode.com/dataset/truthfulqa

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍115🔥1
🖥 Free Courses and Guides That Will Teach You How to Master AI:

Бесплатные курсы и руководства, для погружения в искусственный интеллект.

📂Elements of AI
https://elementsofai.com

📂Learn Prompting
https://learnprompting.org

📂Machine Learning
https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning

📂AI for everyone
https://coursera.org/learn/ai-for-everyone

📂500+ AI Chatbot Prompt Templates
https://theveller.gumroad.com/l/ChatGPTPromptTemplates-byTheVeller

📂Prompt Engineering
https://youtu.be/_ZvnD73m40o

📂ChatGPT Prompt Engineering for Developers
https://deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers

📂Google — AI for Anyone
https://edx.org/learn/artificial-intelligence/google-google-ai-for-anyone

📂Microsoft — AI For Beginners
https://microsoft.github.io/AI-For-Beginners

📂IBM — AI for Everyone: Master the Basics
https://edx.org/learn/artificial-intelligence/ibm-ai-for-everyone-master-the-basics

📂Google — Introduction to Generative AI
https://cloudskillsboost.google/journeys/118

📂DeepLearning — Finetuning LLMs
https://deeplearning.ai/short-courses/finetuning-large-language-models

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍267🔥4😁2🌭1
Intel® Neural Compressor

Intel® Neural Compressor , targeting to provide unified APIs for network compression technologies

Intel® Neural Compressor - фреймворк для сжатия моделей, который позволяет проводить квантование, обрезку (sparsity), дистилляцию и поиск архитектуры нейронной сети. СОвместим с TensorFlow, PyTorch, ONNX Runtime и MXNet.


pip install neural-compressor

🖥 Github: https://github.com/intel/neural-compressor

📂 Docs: https://intel.github.io/neural-compressor

📕 Paper: https://arxiv.org/abs/2309.05516v1

⭐️ Dataset: https://paperswithcode.com/dataset/lambada

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥94