Machinelearning – Telegram
383K subscribers
4.44K photos
856 videos
17 files
4.88K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
☑️ Efficient Streaming Language Models with Attention Sinks

StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.

Фреймворк для развертывания больших языковых моделей в потоковых приложениях, таких как многораундовые диалоги, где ожидается длительное взаимодействие, является настоятельной необходимостью, но сопряжено с двумя серьезными проблемами. StreamingLLM позволяет Llama-2, MPT, Falcon и Pythia стабильно и эффективно выполнять моделирование общения с количеством лексем до 4 млн. и более.

🖥 Github: https://github.com/mit-han-lab/streaming-llm

📕 Paper: http://arxiv.org/abs/2309.17453

⭐️ Dataset: https://paperswithcode.com/dataset/pg-19

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍133🔥1
🦅 Jury: A Comprehensive Evaluation Toolkit

Комплексный набор инструментов для оценки НЛП-экспериментов, предлагающий различные автоматизированные метрики. Jury предлагает удобный и простой в использовании интерфейс.

pip install jury

🖥 Github: https://github.com/obss/jury

📕 Paper: https://arxiv.org/abs/2310.02040v1

🖥 Colab: https://colab.research.google.com/github/obss/jury/blob/main/examples/jury_evaluate.ipynb

⭐️ Demos: https://github.com/Parskatt/DeDoDe/blob/main/demo

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍172🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 GenSim: Generating Robotic Simulation Tasks via Large Language Models

Фреймворк для генерации и моделирования симуляций для роботов с помощью больших языковых моделей.

🖥 Github: https://github.com/liruiw/gensim

✔️ Project: https://liruiw.github.io/gensim

📕 Paper: https://arxiv.org/abs/2310.01361v1

Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim

⭐️ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥4🗿21
DSPy: Programming—not prompting—Foundation Models

DSPy - это фреймворк от Stanfordnlp для решения сложных задач с помощью языковых моделей и поисковых моделей. DSPy объединяет методы промпт-инжиниринга и тонкой настройки ЛМ, а также подходы к рассуждениям, самосовершенствованию и дополнению поисковых моделей и инструментов. Все это выстроено в модулях, которые компонуются и обучаются.

DSPy представляет автоматический компилятор, который учит LM, как выполнять декларативные шаги в вашей программе. В частности, компилятор DSPy осуществляет внутреннюю трассировку вашей программы и затем составляет высококачественные пропиты для больших ЛМ.

pip install dspy-ai

🖥 Github: https://github.com/stanfordnlp/dspy

Tutorial: https://github.com/stanfordnlp/dspy/blob/main/intro.ipynb

🖥 Colab: https://colab.research.google.com/github/stanfordnlp/dspy/blob/main/intro.ipynb

📕 Paper: https://arxiv.org/abs/2308.05734

⭐️ Dataset: https://paperswithcode.com/dataset/hotpotqa

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍163🥰1🤩1
Ключевой ML-специалист HuggingFace Ahsen Khaliq опубликовал статью о Kandinsky

Khaliq в своем Twitter (X) поделился статьей Kandinsky: an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion, которая в разделе DailyPapers заняла первое место, обогнав статьи и Deepmind, и Carnegie Mellon.

В статье рассказывается о диффузионной модели Kandinsky для генерации изображений по тексту.

🕊 X: https://twitter.com/_akhaliq/status/1710106706569478573?s=52&t=hSNPltUk1ZT1M605JGLRnA

📕 Paper: https://huggingface.co/papers

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥117🥴4🎉3
✅️ T3Bench: Benchmarking Current Progress in Text-to-3D Generation

T3Bench - это новый фреймворк преобразования текста в трехмерное изображение, содержащий разнообразные текстовые промпты трех уровней комплексности, специально разработанные для 3D-генерации. Для оценки качества и выравнивания текста содержит две автоматические метрики, основанные на многоракурсных изображениях, создаваемых 3D-контентом.

🖥 Github: https://github.com/THU-LYJ-Lab/T3Bench

📕 Paper: https://arxiv.org/abs/2310.02977v1

⭐️ Dataset: https://paperswithcode.com/dataset/nerf

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥21
Guideline following Large Language Model for Information Extraction

Новая модель для извлечения информации, обученная следовать рекомендациям по аннотированию. GoLLIE превосходит предыдущие подходы по извлечению информации без использования обучающих примеров .

🖥 Github: https://github.com/hitz-zentroa/gollie

Tutorial: https://github.com/stanfordnlp/dspy/blob/main/intro.ipynb

⭐️ Project: https://hitz-zentroa.github.io/GoLLIE/

📕 Paper: https://arxiv.org/abs/2310.03668v1

⭐️ Dataset: https://paperswithcode.com/dataset/harveyner

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍127🔥2
💸 Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language Models: Open Source Code

Новый фреймворк больших языковых моделей с поисковым дополнением, предназначенный для анализа финансовых настроений и обеспечивающий точные и обоснованные прогнозы.
Метод настройки промптов обеспечивает точные прогнозы на поставленные пользователем задачи анализа финансовых новостей.
Проведя обширные оценки, показано, что подход значительно превосходит как традиционные модели анализа настроений, так и известные LLM общего назначения.

git clone https://github.com/AI4Finance-Foundation/FinGPT.git

🖥 Github: https://github.com/AI4Finance-Foundation/FinGPT/tree/master/fingpt/FinGPT-RAG

📕 Paper: https://arxiv.org/abs/2310.04027v1

⭐️ FinNLP: https://github.com/ai4finance-foundation/finnlp

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥61
💻 Graph Structure Learning Benchmark (GSLB)

Комплексный бенчмарк для изучения и построения графов (NeurIPS 2023 Datasets and Benchmarks Track).

pip install GSLB

🖥 Github: https://github.com/gsl-benchmark/gslb

📕 Paper: https://arxiv.org/abs/2310.05163v1

⭐️ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥21
✔️ Lemur: Harmonizing Natural Language and Code for Language Agents

Lemur - это открытая языковая модель, оптимизированная как для естественного языка, так и для кодинга, которая может служить основой для универсальных языковых агентов. Поскольку языковые модели продолжают превращаться из разговорных чат-ботов в функциональные агенты, способные действовать в реальном мире, им необходимо как глубокое понимание языка, так и способность выполнять различные действия. Lemur обеспечивает баланс между естественным языком и кодингом, позволяя агентам выполнять инструкции, обосновывать задачи и предпринимать обоснованные действия.


🖥 Github: https://github.com/openlemur/lemur

🤗 HF: https://huggingface.co/OpenLemur

📕 Paper: https://arxiv.org/abs/2310.06830v1

⭐️ Dataset: https://paperswithcode.com/dataset/ds-1000

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍172🥰1🌭1
🌽 Harnessing Administrative Data Inventories to Create a Reliable Transnational Reference Database for Crop Type Monitoring

EuroCrops - это большая коллекция датасетов, объединяющая все общедоступные сельскохозяйственные наборы данных по из стран Европейского Союза.


🖥 Github: https://github.com/maja601/eurocrops

📕 Paper: https://arxiv.org/pdf/2310.06393v1.pdf

⭐️ Dataset: https://syncandshare.lrz.de/getlink/fiAD95cTrXbnKMrdZYrFFcN8/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍132🔥1
Mini-DALLE3: Interactive Text to Image by Prompting Large Language Models

Модель Mini-DALLE3: Интерактивное преобразование текста в изображение с помощью больших языковых моделей.

🖥 Github: https://github.com/Zeqiang-Lai/Mini-DALLE3

📕 Paper: https://arxiv.org/abs/2310.07653v1

⭐️ Dataset: https://paperswithcode.com/dataset/mmlu

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍134🔥2
🧠 LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios

Метод комбинирования древовидного поиска Монте-Карло и глубокого обучения с подкреплением, представленный AlphaZero и MuZero, позволил достичь сверхчеловеческого уровня в различных играх, таких как Go и Atari, а также добиться заметного прогресса в научных областях, таких как предсказание структуры белков, поиск алгоритмов перемножения матриц и т.д.

🖥 Github: https://github.com/opendilab/LightZero

📕 Paper: https://arxiv.org/abs/2310.08348v1

⭐️ Tasks: https://paperswithcode.com/task/atari-games

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍133🔥2
ScaleCrafter: Tuning-free Higher-Resolution Visual Generation with Diffusion Models

Новый инструмент для генерации изображений по предварительно обученным диффузионным моделям с разрешением, значительно превышающим размеры обучающих изображений.

🖥 Github: https://github.com/yingqinghe/scalecrafter

📕 Paper: https://arxiv.org/abs/2310.07702v1

⭐️ Project: https://yingqinghe.github.io/scalecrafter/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍113🔥1
🔥 Burn - A Flexible and Comprehensive Deep Learning Framework in Rust

Новый фреймворк глубокого обучения, построенный полностью на Rust, который призван обеспечить баланс между гибкостью, производительностью и простотой использования для исследователей, инженеров ML и разработчиков.

cargo new new_burn_app

🖥 Github: https://github.com/burn-rs/burn

📕 Burn Book: https://burn-rs.github.io/book/

⭐️ Guide: https://www.kdnuggets.com/rust-burn-library-for-deep-learning

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍185🔥1🥰1