A state-of-the-art-level open visual language model.
Люди проводят огромное количество времени на цифровых устройствах, используя графические пользовательские интерфейсы (GUI), например, экраны компьютеров или смартфонов.
Большие языковые модели, такие как ChatGPT, могут помочь людям в решении таких задач, как написание электронных писем и ответов на вопросы, но они не способны понимать и взаимодействовать с графическими интерфейсами, что ограничивает их потенциал в плане повышения уровня автоматизации.
CogAgent - новая визуальная языковая модель (VLM) с 18 миллиардами параметров, которая специализируется на работе и навигации в графических интерфейсах. Используя кодировщики изображений как низкого, так и высокого разрешения, CogAgent поддерживает ввод с разрешением 1120*1120, что позволяет ему распознавать мельчайшие элементы страниц и текст.
Будучи универсальной моделью визуального языка, CogAgent достигает передовых результатов в пяти тестах VQA с большим количеством текста и четырех тестах VQA общего назначения, включая VQAv2, OK-VQA, Text-VQA, ST-VQA, ChartQA, infoVQA, DocVQA, MM-Vet и POPE. CogAgent, использующий в качестве входных данных только скриншоты, превосходит методы на основе LLM, которые принимают извлеченный HTML-текст, в задачах навигации по графическому интерфейсу на ПК и смартфонах.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥7❤2😁1
This media is not supported in your browser
VIEW IN TELEGRAM
Amphion - это новый инструмент с открытым исходным кодом, позволяющий создавать речь, звуки и песни.
Он разработан для поддержки исследований в области аудио, музыки и генерации речи.
С его помощью Тейлор Свифт демонстрирует свой талант, исполняя песни на китайском. 😊🎵
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20❤3🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Большая подборка вопросов для собеседования по DS, AI, ML, DL, NLP, компьютерному зрению.
Подборка вопросов для собеседования поможет вам на собеседовании в области науки о данных, искусственного интеллекта, машинного обучения, глубинного обучения, обработки естественного языка, компьютерного зрения.
▪100 вопросов для собеседования по машинному обучению в 2024 году
▪50 вопросов для собеседования по компьютерному зрению в 2024 году
▪50 вопросов для интервью по глубинному обучению в 2024 году
▪50 вопросов для интервью по НЛП (обработке естественного языка) в 2024 году
▪100 вопросов с собеседований Data Science
▪Топ-60 вопросов с собеседований R
@ai_machinelearning_big_data
Подборка вопросов для собеседования поможет вам на собеседовании в области науки о данных, искусственного интеллекта, машинного обучения, глубинного обучения, обработки естественного языка, компьютерного зрения.
▪100 вопросов для собеседования по машинному обучению в 2024 году
▪50 вопросов для собеседования по компьютерному зрению в 2024 году
▪50 вопросов для интервью по глубинному обучению в 2024 году
▪50 вопросов для интервью по НЛП (обработке естественного языка) в 2024 году
▪100 вопросов с собеседований Data Science
▪Топ-60 вопросов с собеседований R
@ai_machinelearning_big_data
🔥34👍8❤6🤬4
🪩 DiffusionLight: Light Probes for Free by Painting a Chrome Ball
Диффузионная модель, обучена на миллиардах изображений, для визуализации хромированного шара на изображениях с разным освещением.
Несмотря на простоту, эта задача остается сложной: диффузионные модели часто вставляют неправильные или непоследовательные объекты и не могут правильно генерировать изображения со светом в формате HDR.
Для входного изображения, оценивается освещение сцены в виде карты окружения HDR. Идея заключается в том, чтобы нарисовать на изображении хромированный шар с помощью диффузионной модели и развернуть его в окружении. Таким образом решаются задачи: (1) как последовательно генерировать хромированные шары и (2) как использовать модель диффузии LDR для создания хромированных шаров HDR.
Данный метод позволяет генерировать освещение высокого качества в различных условиях и демонстрирует превосходный результат для изображений в дикой природе.
🖥 GitHub: https://github.com/DiffusionLight/DiffusionLight
🔮 Colab: https://colab.research.google.com/drive/15pC4qb9mEtRYsW3utXkk-jnaeVxUy-0S?usp=sharing&sandboxMode=true
📚 Paper: https://arxiv.org/abs/2312.09168
🥩 Score Measurement: https://vistec-my.sharepoint.com/:f:/g/personal/pakkapon_p_s19_vistec_ac_th/EvBHbnLrVnZArhQTcboh6qkBGcSqUqzdgx13iZ2IsLPzOw
@ai_machinelearning_big_data
Диффузионная модель, обучена на миллиардах изображений, для визуализации хромированного шара на изображениях с разным освещением.
Несмотря на простоту, эта задача остается сложной: диффузионные модели часто вставляют неправильные или непоследовательные объекты и не могут правильно генерировать изображения со светом в формате HDR.
Для входного изображения, оценивается освещение сцены в виде карты окружения HDR. Идея заключается в том, чтобы нарисовать на изображении хромированный шар с помощью диффузионной модели и развернуть его в окружении. Таким образом решаются задачи: (1) как последовательно генерировать хромированные шары и (2) как использовать модель диффузии LDR для создания хромированных шаров HDR.
Данный метод позволяет генерировать освещение высокого качества в различных условиях и демонстрирует превосходный результат для изображений в дикой природе.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥18👍7🥰2🤔2❤1⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
ImageDream - новый набор диффузионных моделей многоракурсной генерации, разработанный для решения сложной задачи создания 3D-объектов из изображения.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍6🔥3
🃏 Poker Hand History File Format Specification
An open-source Python library for poker simulations and hand evaluations.
PokerKit - это библиотека Python с открытым исходным кодом для симуляции игры в покер и оценки покерных рук, разработанная группой по изучению покера Университета Торонто.
PokerKit поддерживает широкий спектр разновидностей покера и предоставляет архитектуру для создания собственных игр.
Все эти возможности предоставляются через интуитивно понятный унифицированный API высокого уровня.
Библиотека может быть использована в самых разных сферах, от разработки покерного AI до создания инструментов предсказания покерных.
🖥 GitHub: https://github.com/uoftcprg/pokerkit
📚 Paper: https://arxiv.org/pdf/2312.11753v1.pdf
🥩 Project: https://pokerkit.readthedocs.io/en/stable/
@ai_machinelearning_big_data
An open-source Python library for poker simulations and hand evaluations.
PokerKit - это библиотека Python с открытым исходным кодом для симуляции игры в покер и оценки покерных рук, разработанная группой по изучению покера Университета Торонто.
PokerKit поддерживает широкий спектр разновидностей покера и предоставляет архитектуру для создания собственных игр.
Все эти возможности предоставляются через интуитивно понятный унифицированный API высокого уровня.
Библиотека может быть использована в самых разных сферах, от разработки покерного AI до создания инструментов предсказания покерных.
pip install pokerkit@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🥰13🔥5👍4❤3
This media is not supported in your browser
VIEW IN TELEGRAM
🥳FreeInit with AnimateDiff Gradio Colab
FreeInit - новый эффективный метод улучшения временной согласованности видео, генерируемых диффузионными моделями.
🖥 colab: https://github.com/camenduru/FreeInit-colab
🔮 page: https://tianxingwu.github.io/pages/FreeInit/
📚 paper: https://arxiv.org/abs/2312.07537
🥩 code: https://github.com/TianxingWu/FreeInit
@ai_machinelearning_big_data
FreeInit - новый эффективный метод улучшения временной согласованности видео, генерируемых диффузионными моделями.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11👏3❤2🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🔍 FIND: Interface Foundation Models' Embeddings
FIND - удобный интерфейс для настройки эмбедингов вших моделей.
🖥 Code: https://github.com/UX-Decoder/FIND
🎓 Demo: http://find.xyzou.net/
🔮 Project Page: https://x-decoder-vl.github.io
🥩 Demo: http://find.xyzou.net
📚 ArXiv: https://arxiv.org/pdf/2312.07532.pdf
@ai_machinelearning_big_data
FIND - удобный интерфейс для настройки эмбедингов вших моделей.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍3🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
▪Новая модель "LongAnimateDiff" способная генерировать видео с количеством кадров от 16 до 64.
Веса можно загрузить с Google Drive или HuggingFace. Для получения оптимальных результатов рекомендуется использовать шкалу движения 1,28.
▪Специализированная модель, предназначенная для создания видеороликов с 32 кадрами. Эта модель обычно создает видео более высокого качества по сравнению с моделью
LongAnimateDiff, поддерживающей 16-64 кадра. Веса на Google Drive или HuggingFace. Для получения хороших результатов используйте масштаб движения 1,15.@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥3❤2🥰1
🎲 ReBRAC (Revisited Behavior Regularized Actor Critic)
ReBRAC (Revisited Behavior Regularized Actor Critic) — алгоритм, созданный в Tinkoff Research, который обучает ИИ в четыре раза быстрее и на 40% качественнее мировых аналогов в области обучения с подкреплением (Reinforcement Learning, RL), адаптируя его к новым условиям на ходу.
🖥 Code: https://github.com/tinkoff-ai/ReBRAC
🎓 ArXiv: https://arxiv.org/abs/2305.09836
@ai_machinelearning_big_data
ReBRAC (Revisited Behavior Regularized Actor Critic) — алгоритм, созданный в Tinkoff Research, который обучает ИИ в четыре раза быстрее и на 40% качественнее мировых аналогов в области обучения с подкреплением (Reinforcement Learning, RL), адаптируя его к новым условиям на ходу.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19❤6🔥3🤔1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
🌪 Can machine learning predict chaos?
Может ли машинное обучение предсказывать хаос? В новой статье проводится масштабное сравнение современных методов прогнозирования на гигантском наборе данных из 135 хаотических систем.
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.5.043252
@ai_machinelearning_big_data
Может ли машинное обучение предсказывать хаос? В новой статье проводится масштабное сравнение современных методов прогнозирования на гигантском наборе данных из 135 хаотических систем.
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.5.043252
@ai_machinelearning_big_data
👍24❤7🎉5🔥2🍌1
This media is not supported in your browser
VIEW IN TELEGRAM
PIA: Your Personalized Image Animator via Plug-and-Play Modules in Text-to-Image Models 🎄 🎁 🎅 Colab 🥳
PIA, аниматор изображений, который превосходит аналоги в согласованности текста с изображениями.
🎓 page: https://pi-animator.github.io
📚 paper: https://arxiv.org/abs/2312.13964
🖥 code: https://github.com/open-mmlab/PIA
🥩 OpenXLab: https://openxlab.org.cn/apps/detail/zhangyiming/PiaPia
🥩 colab: https://github.com/camenduru/PIA-colab
@ai_machinelearning_big_data
PIA, аниматор изображений, который превосходит аналоги в согласованности текста с изображениями.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍22❤6🎉3🔥1😁1
This media is not supported in your browser
VIEW IN TELEGRAM
- Neuralangelo: потрясающая высокоточная 3D-реконструкция поверхностей. https://research.nvidia.com/labs/dir/neuralangelo/
- Magic3D: быстрое преобразование текста в 3D! https://research.nvidia.com/labs/dir/magic3d/
- Hair Simulation: эффективное моделирование дискретных упругих стержней (DER) для волос. Это не совсем работа над искусственным интеллектом, но очень визуально привлекательная технология. https://research.nvidia.com/publication/2023-08_interactive-hair-simulation-gpu-using-admm
-Eureka: GPT-4 учит робота-руку крутить ручки! https://eureka-research.github.io
- Align Your Latents: синтез видео высокого разрешения с помощью моделей латентной диффузии. Одна из лучших работ по генерации видео в 2023 году. https://research.nvidia.com/labs/toronto-ai/VideoLDM/
- Text2Materials: Модель работы с текстовыми промптами для генерации материалов, таких как кирпич или мозаика, которые можно выложить плиткой и плавно воспроизвести на поверхности любого размера.
https://blogs.nvidia.com/blog/siggraph-research-generative-ai-materials-3d-scenes/
- CALM: метод обучения управляемых виртуальных персонажей выполнению действий в физическом симуляторе. https://research.nvidia.com/labs/par/
- Vid2Player3D: обучение навыкам игры в теннис для виртуальных персонажей! https://research.nvidia.com/labs/toronto-ai/vid2player3d/
- Flexicubes: mesh optimization https://research.nvidia.com/labs/toronto-ai/flexicubes/
- eDiff-I: диффузия текста в изображение с помощью ансамбля экспертных моделей.
https://research.nvidia.com/labs/dir/eDiff-I/
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥9❤5😁1🎉1
This media is not supported in your browser
VIEW IN TELEGRAM
AnyDoor - новый генератор изображений на основе диффузии, который может гармонично вписывать любые объекты в новые сцены в указанных местах.
Модель, обучена на видео и понимает разные ракурсы и освещения объектов, чтобы вписывать изображения в любой новый план с новым освещением и камерой.
pip install git+https://github.com/cocodataset/panopticapi.git
pip install pycocotools -i https://pypi.douban.com/simple
pip install lvis@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21❤5🎉2🔥1🗿1
2023 год был годом ИИ!Вот некоторые из самых значимых ИИ релизов года...👇
https://journal.everypixel.com/2023-the-year-of-ai
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤21👍7🔥2
Новая новая мультимодальная модель большого языка (MLLM) от Apple, которая может точно распознавать отдельные объекты и их отдельные части на изображении и обсуждать всю информацию с пользователем.
В точности и скорости обработки данных с изображений на бенчмарках Ferret опережает GPT-4🔥
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥6❤1
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍6💊3🔥1