This media is not supported in your browser
VIEW IN TELEGRAM
Любопытны пост, где автор объяснил на примере очень простую и очевидную, но мощную идею.
Он заметил, что то, что мы называем диффузией текста, на самом деле - это просто обобщённая версия классического обучения BERT.
Как работает BERT?
В BERT модель берёт текст и маскирует часть слов, а потом учится угадывать, какие слова были скрыты.
В диффузии происходит почти то же самое, только шагов больше: на каждом шаге модель немного «портит» текст (добавляет шум), а затем восстанавливает его, всё меньше и меньше теряя смысл, пока не соберёт финальный чистый текст.
То есть BERT делает один шаг очистки - угадывает замаскированные слова.
А диффузионная модель делает много таких шагов подряд, постепенно превращая случайный набор токенов в осмысленный текст.
Барри дообучил RoBERTa, чтобы показать это на практике - и получил настоящий текстовый диффузионный генератор.
В примере:
- Используется RoBER (улучшенная версия модели BERT,) и датасет WikiText.
- На каждом шаге часть токенов заменяется на
<MASK>, модель восстанавливает их, потом снова маскирует — и так несколько раз.
- После нескольких итераций модель способна генерировать связный текст,
даже без автогенеративного декодера (как у GPT).
📈 Результаты
- Модель генерирует осмысленный текст, хотя и не идеально связный.
- Качество улучшалось по мере добавления шагов диффузии.
- По времени генерации RoBERTa Diffusion была немного медленнее, чем GPT-2 (~13 сек против 9 сек), но архитектура осталась полностью encoder-only.
Автор упоминает, что позже наткнулся на работу DiffusionBERT, где идею реализовали глубже и подтвердили результатами.
Главная мысль:
BERT можно считать одноступенчатой версией текстовой диффузии.
Если добавить больше шагов, то vs получаем диффузионный генератор текста.
Если BERT - это один шаг диффузии, то будущее может принадлежать моделям, совмещающим "понимание" и "генерацию" текста в одном процессе.
https://nathan.rs/posts/roberta-diffusion/
@ai_machinelearning_big_data
#AI #Diffusion #RoBERTa #BERT #LanguageModel #MLM #Research
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥175❤37👍23👏19🤓19👨💻7🤗2🥰1😁1🥱1🤝1
Media is too big
VIEW IN TELEGRAM
Учёные из UMass Amherst создали первый искусственный нейрон, который общается с живыми нейронами с тем же микроскопическим напряжением около 0,1 В, как в мозге.
Устройство использует белковые нанопроволоки бактерий, устойчивые к влаге, что позволяет прямую и энергоэффективную связь с живыми клетками. Большинство предыдущих искусственных нейронов работали на гораздо более высоких напряжениях и мощностях, авторы отмечают, что их устройство потребляет в 10 раз меньше напряжения и в ~100 раз меньше мощности по сравнению с ранними версиями.
sciencealert
Компания Krea AI выложила в открытый доступ Krea Realtime: 14B модель, которая генерирует видео в реальном времени со скоростью 11 кадров в секунду на одной NVIDIA B200.
Модель основана на Wan 2.1 14B и обучена с помощью метода Self-Forcing, что позволило добиться высокой скорости при всего 4 шагах инференса.
HF
Gemini теперь использует живые данные Google Maps - часы работы, рейтинги, маршруты и фото из 250 млн локаций. Модель отвечает на вопросы о местах не догадками, а на основе реальных данных. Разработчики могут передавать координаты и встраивать интерактивный виджет карт прямо в приложения.
Фича уже доступна в последних моделях Gemini и может сочетаться с другими инструментами.
Anthropic расширила возможности Claude, запустив версию Claude for Life Sciences, созданную для биомедицинских и лабораторных задач. Модель ревзошла человека в тесте Protocol QA (0.83 против 0.79) и интегрируется с ведущими научными платформами - Benchling, BioRender, PubMed, Wiley Scholar Gateway и 10x Genomics.
Claude теперь может выполнять автоматизацию лабораторных процессов - от проверки RNA-seq данных до генерации экспериментальных протоколов, используя систему Agent Skills.
Anthropic также запустила программу AI for Science с бесплатными API-кредитами для исследователей, чтобы ускорить внедрение ИИ в науку.
Claude
IBM разработала CyberPal 2.0 (4B–20B параметров), обученные на новом датасете SecKnowledge 2.0 с экспертными форматами и доказательной базой.
Модели показывают на 7-14% лучшие результаты, чем крупные аналоги, в задачах классификации уязвимостей и поиска первопричин.
Успех обеспечен не мощностью, а структурой и логикой рассуждений.
Paper
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥56❤30👍9🥰6🤔5🤝3😁2🐳2🤗1
Media is too big
VIEW IN TELEGRAM
Теперь он создаёт не только отчёты, но и готовые веб-страницы и подкасты.
Работает связка Qwen3-Coder, Qwen-Image и Qwen3-TTS.
@ai_machinelearning_big_data
#Qwen #AI #DeepResearch #Qwen3 #AItools
Please open Telegram to view this post
VIEW IN TELEGRAM
❤40🔥26👍12🥰4🐳3🤔2👏1
OmniVinci - модель, способная одновременно понимать и обрабатывать разные типы информации: текст, изображения, видео и звук.
Модель крайне эффективна, несмотря на то, что была обучена всего на 200 млрд. токенов (что в 6 раз меньше, чем у Qwen2.5-Omni - 1.2 трлн.). Это стало возможным благодаря архитектурным фишкам и тщательному подходу к подготовке данных.
В основе OmniVinci 3 компонента:
Абляция показала, что вклад каждого элемента играет свою важную роль: базовая модель с простой конкатенацией токенов набирает в среднем 45.51 балла. Добавление TEG поднимает результат до 47.72 (+2.21), CRTE — до 50.25 (+4.74 от базовой), а финальный слой в виде OmniAlignNet доводит средний балл до 52.59, что в сумме дает прирост в 7.08 пункта.
Данные для обучения - 24 млн. диалогов, которые пропустили через систему, где отдельная LLM анализирует и объединяет описания из нескольких модальностей, создавая единую и корректную аннотацю.
Итоговый датасет на 36% состоял из изображений, на 21% из звуков, на 17% из речи, 15% - из смешанных данных и на 11% из видео.
В бенчах OmniVinci обошла всех конкурентов. На Worldsense модель набрала 48.23 балла против 45.40 у Qwen2.5-Omni. На Dailyomni - 66.50 против 47.45. В аудио-задачах OmniVinci тоже молодец: 58.40 в MMAR и 71.60 в MMAU.
В распознавании речи модель показала WER 1.7% на датасете LibriSpeech-clean.
Применение модели протестили на практике. В задаче классификации дефектов полупроводниковых пластин, OmniVinci достигла точности 98.1%, что лучше, чем у специализированной NVILA (97.6%), и у более крупную 40-миллиардную VILA (90.8%).
@ai_machinelearning_big_data
#AI #ML #NVIDIA #OmniVinci
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍56❤21🔥13🤣3🤗3💅3🕊2
Media is too big
VIEW IN TELEGRAM
🌐 OpenAI представила Atlas - свой новый AI-браузер с памятью и режимом агента.
Atlas полностью интегрирован с ChatGPT и работает на базе ChatGPT Search.
Главная фишка - Agent Mode, который может самостоятельно перемещаться по сайтам, открывать страницы и выполнять задачи прямо в браузере.
Можно запускать несколько вкладок с агентами одновременно.
🧠 Браузер также имеет постоянную память (Memory Recall), он запоминает контекст, прошлые действия и может продолжить с того места, где вы остановились.
Atlas уже доступен для всех пользователей: Free, Plus, Pro, Go и Business.
Для Enterprise и Education доступна бета-версия.
📱 Доступен для MacOs. Версии для Windows, iOS и Android - в разработке.
Скоро поделюсь результатами тестов и первыми впечатлениями от Agent Mode.
@ai_machinelearning_big_data
https://chatgpt.com/atlas
#OpenAI #Atlas #ChatGPT #AIbrowser #AgentMode
Atlas полностью интегрирован с ChatGPT и работает на базе ChatGPT Search.
Главная фишка - Agent Mode, который может самостоятельно перемещаться по сайтам, открывать страницы и выполнять задачи прямо в браузере.
Можно запускать несколько вкладок с агентами одновременно.
🧠 Браузер также имеет постоянную память (Memory Recall), он запоминает контекст, прошлые действия и может продолжить с того места, где вы остановились.
Atlas уже доступен для всех пользователей: Free, Plus, Pro, Go и Business.
Для Enterprise и Education доступна бета-версия.
📱 Доступен для MacOs. Версии для Windows, iOS и Android - в разработке.
Скоро поделюсь результатами тестов и первыми впечатлениями от Agent Mode.
@ai_machinelearning_big_data
https://chatgpt.com/atlas
#OpenAI #Atlas #ChatGPT #AIbrowser #AgentMode
👍66🔥55❤31😁6🗿6
Media is too big
VIEW IN TELEGRAM
Qwen3-VL-32B превосходи GPT-5 mini и Claude 4 Sonnet* в задачах STEM, визуальных вопросах (VQA), OCR, анализе видео и агентных сценариях.
При этом у модели всего 32 млрд параметров и она сопоставима, а на некоторых бенчмарках даже превосходит модели на 235 млрд параметров (лучше всего показывает себя на *OSWorld*).
Попробовать / HF
Значительно прокачали возможности студии по генерации кода. Сгенерированный проекты можно просматривать или дорабатывать прямо в браузере и деплоить. Также добавили прикольный режим «I’m Feeling Lucky», который генерирует случайную идею для вайбкодинга.
aistudio
На первый взгляд DeepSeek-OCR кажется просто моделью для распознавания текста. Но на деле - это совершенно новый способ того, как ИИ может хранить и обрабатывать информацию.
Обычно модели работают с текстовыми токенами - каждый кусочек слова превращается в отдельный токен, и при длинных документах их число растёт квадратично, делая работу медленной и дорогой. DeepSeek решает эту проблему иначе: она превращает длинный текст в изображение, кодирует его в набор компактных визуальных токенов и затем восстанавливает текст обратно.
Эксперименты показали: даже при 9–10-кратном сжатии точность OCR остаётся около 97%, а при 20-кратном - около 60%. Это доказывает, что плотные визуальные представления способны нести ту же информацию куда эффективнее, чем обычные текстовые токены.
Ключевая инновация DeepSeek- новый энкодер DeepEncoder, который умеет обрабатывать страницы высокого разрешения без переполнения памяти. Он делает это в три шага: сначала применяет локальное внимание для мелких деталей, затем 16× свёрточное сжатие, а потом глобальное внимание для понимания всей структуры документа. Такая последовательная архитектура сохраняет точность, но радикально снижает число токенов и объём активаций.
Авторы также предлагают механизм «забывания»: старый контекст можно постепенно уменьшать в разрешении, чтобы свежая информация оставалась чёткой, а старая занимала меньше места. DeepSeek - как всегда умницы.
DeepSeek-OCR
США входят в фазу "
jobless growth"- производительность растёт благодаря ИИ, но найм почти остановился. Goldman отмечает: компании делают больше с теми же людьми, а реальный рост занятости вне здравоохранения стал отрицательным. Джером Пауэлл описал рынок как “очень мало найма, мало увольнений”, а выпускники всё чаще не могут найти первую работу.
По данным Challenger, планы по найму - на минимуме с 2009 года. Рост есть, рабочих мест - всё меньше.
futurism
Anthropic объявила о публичном релизе Claude Desktop - приложения для Mac и Windows.
На Mac теперь можно делать скриншоты, кликать по окнам, чтобы поделиться контекстом с Claude, и управлять агентом голосом.
Скачать для Mac и Windows
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍85❤40🔥15🤗10👏5🥰2🤔2🦄2🎉1
Media is too big
VIEW IN TELEGRAM
Версия Hunyuan World 1.0 умела создавать 3D-сцены по тексту или одному изображению (и была заточена на работу даже на обычных видеокартах), новая версия 1.1 способна строить 3D-мир из видео и мультиракурсных изображений.
Чем интересная
🔹 Поддерживает любые входные данные:
Модель принимает на вход всё - видео, фото, карты глубины, описание позы и параметры камеры. Моделька точно восстанавливает геометрию сцены без искажений.
🔹 Любой формат вывода:
На выходе выдает
плотные облака точек, карты глубины, нормали поверхностей, параметры камеры и 3D Gaussian Splattings.
🔹 Быстрая работа на GPU:
Модель полностью feed-forward, делает один проход и выдаёт готовый 3D-результат всего за несколько секунд.
🌐 Проект: https://3d-models.hunyuan.tencent.com/world/
🔗 GitHub: https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror
🤗 HF: https://huggingface.co/tencent/HunyuanWorld-Mirror
✨ Демо — https://huggingface.co/spaces/tencent/HunyuanWorld-Mirror
📄 Технический отчёт — https://3d-models.hunyuan.tencent.com/world/worldMirror1_0/HYWorld_Mirror_Tech_Report.p
@ai_machinelearning_big_data
#AI #3D #VR #Gaming #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍141👏25❤23🔥19🤩15🎉8🤗3🦄3⚡1❤🔥1
🔍 Qwen3-VL-2B-Thinking — новая маленькая мультимодальная модель, заточенная под рассуждения
Компактная версия семейства Qwen3-VL, ориентированная на глубокое мышление, аналитику и агентные применения.
В линейке Qwen-VL предусмотрены два ключевых режима:
- *Instruct* — для диалогов и инструкций,
- *Thinking* — для логических рассуждений, кода и комплексных задач.
💡 Особенности
- Архитектура поддерживает мультимодальность: модель понимает текст и изображения, способна анализировать контент и выстраивать причинно-следственные связи.
- Оптимизирована для reasoning-задач, где важна не генерация текста, а последовательное мышление и вывод.
- Благодаря размеру в 2B параметров, модель легко разворачивается на локальных GPU и в облачных окружениях.
- Поддерживает tool calling и интеграцию в агентные фреймворки.
Qwen3-VL-2B-Thinking - отличная модель при минимальных ресурсах.
👉 https://huggingface.co/Qwen/Qwen3-VL-2B-Thinking
@ai_machinelearning_big_data
#Qwen3VL #Qwen #Reasoning #AI #Multimodal #OpenSource
Компактная версия семейства Qwen3-VL, ориентированная на глубокое мышление, аналитику и агентные применения.
В линейке Qwen-VL предусмотрены два ключевых режима:
- *Instruct* — для диалогов и инструкций,
- *Thinking* — для логических рассуждений, кода и комплексных задач.
💡 Особенности
- Архитектура поддерживает мультимодальность: модель понимает текст и изображения, способна анализировать контент и выстраивать причинно-следственные связи.
- Оптимизирована для reasoning-задач, где важна не генерация текста, а последовательное мышление и вывод.
- Благодаря размеру в 2B параметров, модель легко разворачивается на локальных GPU и в облачных окружениях.
- Поддерживает tool calling и интеграцию в агентные фреймворки.
Qwen3-VL-2B-Thinking - отличная модель при минимальных ресурсах.
👉 https://huggingface.co/Qwen/Qwen3-VL-2B-Thinking
@ai_machinelearning_big_data
#Qwen3VL #Qwen #Reasoning #AI #Multimodal #OpenSource
👍227❤61🔥47😎11🎉9👏7🤔7🥰6🤩5🤗3🦄3
На платформе представлено почти 3000 курсов, лабораторных и практических треков, охватывающих темы от основ python и машинного обучения до продвинутого MLOps, Vertex AI, Gemini и Prompt Design.
Чему можно научиться
- Встроить генеративный ИИ в свой дата-пайплайн;
- Научиться деплоить и обслуживать модели;
- Создать собственное приложение с Gemini и Streamlit;
- Пройти обучение с наставниками или в сообществе Google Cloud Innovators.
Разные уровни от новичков до тимлидов.
По завершении даже выдают сертификаты, которые можно добавить в резюме и на LinkedIn.
@ai_machinelearning_big_data
#googel #ai #freecourse
Please open Telegram to view this post
VIEW IN TELEGRAM
👍66👨💻50🔥20🎉16❤11👏4🤩3💅3🗿1
🔥 GOOGLE AI опубликовали пост о настоящем прорыве в области QUANTUM AI
Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».
Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.
Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.
🟠 Что это значит простыми словами
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.
Проще говоря:
1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.
2) Затем применяют обратные операции, как будто “перематывают” процесс назад.
3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.
4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.
Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.
Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.
«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.
*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.
🟢 Статья: https://www.nature.com/articles/s41586-025-09526-6
@ai_machinelearning_big_data
#QuantumComputing #Google #AI #Nature #Physics
Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».
Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.
Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.
Проще говоря:
1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.
2) Затем применяют обратные операции, как будто “перематывают” процесс назад.
3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.
4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.
Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.
Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.
«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.
*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.
@ai_machinelearning_big_data
#QuantumComputing #Google #AI #Nature #Physics
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥292👍255❤100🤔70👏53🥰31😐22🤩17🤗13👌6🤓6
Media is too big
VIEW IN TELEGRAM
Anthropic ведёт переговоры с Google о крупнейшем облачном контракте - на десятки миллиардов долларов. Речь идёт о долгосрочном соглашении, которое обеспечит Anthropic доступом к кастомным TPU - специализированным чипам Google для обучения и работы крупных моделей.
Google уже вложил в Anthropic $3 млрд ($2 млрд в 2023 и ещё $1 млрд в 2025).
Подобные соглашения обычно включают не только вычислительные мощности, но и сетевые и хранилищные ресурсы на несколько лет вперёд.
Anthropic ожидает мощный рост выручки - более чем в два-три раза, до $9 млрд годового run rate. Это результат стремительного роста корпоративных продуктов компании.
Переговоры находятся на ранней стадии, и условия сделки ещё могут измениться.
reuters
Вместо традиционного SPMD-подхода, где каждый узел работает независимо, Monarch позволяет управлять тысячами GPU из одного скрипта, как будто они находятся на одной машине.
Он организует процессы и акторы в многомерные «сетки» (meshes), поддерживает привычные Python-конструкции, включая обработку исключений для отказоустойчивости, и разделяет управляющий и данные-планы - данные передаются напрямую между GPU через RDMA.
Распределённые тензоры выглядят и используются как локальные, а сложные сценарии вроде обучения с подкреплением или отказоустойчивого предобучения реализуются проще и понятнее.
Monarch уже интегрирован с VERL, TorchForge и Lightning AI, и позволяет запускать, отлаживать и масштабировать задачи прямо из Jupyter Notebook. pytorch
Появились сообщения, что Amazon Web Services уволила около 40 % своей DevOps-команды и частично заменила их ИИ-системой, способной автоматически находить и устранять ошибки в инфраструктуре. Внутреннее письмо, опубликованное на вики компании и быстро удалённое, связывало сокращения со «стратегическими инициативами по автоматизации». Инцидент произошёл незадолго до крупного сбоя AWS, который затронул Snapchat, Roblox и другие платформы.
Сообщается, что новая система может самостоятельно исправлять сбои IAM, восстанавливать виртуальные сети и откатывать неудачные развертывания Lambda без участия человека. Однако никаких официальных подтверждений от Amazon не поступало.
80.lv
Демонстрирует хорошие результаты: 51.8% на MM-IFEval (точное следование инструкциям) и 71.4% на RealWorldQA (понимание реального мира). LFM2-VL-3B отлично работает как с одним, так и с несколькими изображениями, а также точно распознаёт английский текст на изображениях (OCR).
При этом модель показывает очень низкий уровень галлюцинаций на бенчмарке POPE.
HF
Согласно опросу 28 миллионов человек в США, доля тех, кто продолжает пользоваться сервисом спустя месяц, выросла с менее 60% два года назад до 90% сегодня.
Проще говоря - 9 из 10 пользователей остаются с ChatGPT уже через месяц. Это лучший результат в истории массовых цифровых продуктов: даже YouTube, считавшийся эталоном, показывает месячную удерживаемость около 85%.
Ещё впечатляюще: через полгода с сервисом остаётся около 80% пользователей - и эта цифра продолжает расти, формируя так называемую «улыбающуюся» кривую удержания.
Для продуктовых команд - это мечта. Для всей индустрии - ясный сигнал: перед нами продукт нового поколения.
X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍138👏31❤29🤩20🔥9🤔5🎉5👌2🤗2
⚠️ Китай попытался разобрать литографическую машину ASML (DUV), чтобы изучить её устройство, но повредил систему и затем обратился в ASML с просьбой отремонтировать.
Этот случай показал, насколько такие технологии хрупкие и зависят от поставщика.
🏭 Что такое литографическая установка
Литографическая установка - это ключевая машина, которая «печатает» микроскопические схемы на кремниевых пластинах.
Именно она формирует транзисторы и соединения, из которых состоит каждый процессор, память или графический чип.
От её точности зависит, сколько транзисторов можно разместить на одном чипе, а значит, его мощность и энергоэффективность.
ASML - голландская компания, единственный в мире производитель передовых литографических систем для чипов.
Без её технологий невозможно выпускать современные процессоры уровня NVIDIA, AMD, Apple, Intel или Huawei.
📉 Контекст
Китай серьёзно отстаёт в производстве литографических установок и не имеет доступа к топовым системам DUV и EUV от ASML из-за экспортных ограничений США.
С сентября 2024 года Нидерланды ужесточили правила — теперь даже продвинутые DUV-модели, вроде 1970i и 1980i, требуют специальных лицензий.
🔬 Что такое DUV и EUV
Литографические машины DUV (Deep Ultraviolet) и EUV (Extreme Ultraviolet) - это сердце производства чипов.
Они «печатают» микросхемы с помощью света:
- DUV использует длину волны 193 нм
- EUV - всего 13,5 нм
Чем короче волна, тем мельче детали можно выгравировать → больше транзисторов → выше производительность и ниже энергопотребление.
💡 Без таких систем невозможно создавать высокоплотные и быстрые процессоры, на которых работает современный ИИ.
https://www.techspot.com/news/109969-chinese-engineers-allegedly-broke-asml-chipmaking-machine-failed.html
@ai_machinelearning_big_data
#AI #Chips #ASML #China #DUV #EUV #Semiconductors
Этот случай показал, насколько такие технологии хрупкие и зависят от поставщика.
🏭 Что такое литографическая установка
Литографическая установка - это ключевая машина, которая «печатает» микроскопические схемы на кремниевых пластинах.
Именно она формирует транзисторы и соединения, из которых состоит каждый процессор, память или графический чип.
От её точности зависит, сколько транзисторов можно разместить на одном чипе, а значит, его мощность и энергоэффективность.
ASML - голландская компания, единственный в мире производитель передовых литографических систем для чипов.
Без её технологий невозможно выпускать современные процессоры уровня NVIDIA, AMD, Apple, Intel или Huawei.
📉 Контекст
Китай серьёзно отстаёт в производстве литографических установок и не имеет доступа к топовым системам DUV и EUV от ASML из-за экспортных ограничений США.
С сентября 2024 года Нидерланды ужесточили правила — теперь даже продвинутые DUV-модели, вроде 1970i и 1980i, требуют специальных лицензий.
🔬 Что такое DUV и EUV
Литографические машины DUV (Deep Ultraviolet) и EUV (Extreme Ultraviolet) - это сердце производства чипов.
Они «печатают» микросхемы с помощью света:
- DUV использует длину волны 193 нм
- EUV - всего 13,5 нм
Чем короче волна, тем мельче детали можно выгравировать → больше транзисторов → выше производительность и ниже энергопотребление.
💡 Без таких систем невозможно создавать высокоплотные и быстрые процессоры, на которых работает современный ИИ.
https://www.techspot.com/news/109969-chinese-engineers-allegedly-broke-asml-chipmaking-machine-failed.html
@ai_machinelearning_big_data
#AI #Chips #ASML #China #DUV #EUV #Semiconductors
😁147🤔75👍49❤21😢18😨11👏7🔥6❤🔥1🤗1💘1
This media is not supported in your browser
VIEW IN TELEGRAM
ByteDance выпустила модель Wan2.1-14B, специализирующуюся на задаче *
video-as-prompt*, то есть использование видео или комбинации изображений и текста как входных данных для генерации нового видео. - Работает в режимах «видео → видео» или «изображения/текст → видео».
- 14 млрд параметров — высокая детализация, плавная динамика, реалистичные движения.
- Использует исходное видео как шаблон стиля и композиции.
⚠️ Что стоит учитывать
- Модель требует мощных GPU и большого объёма памяти.
- Качество результата зависит от сложности запроса и длины видео.
@ai_machinelearning_big_data
#AI #VideoGeneration #ByteDance #Wan2 #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
👍142❤23🔥22👏22🤩17😎6😁5🥰2🤗2🤔1
🦾Китай сейчас роботизирует свои заводы значительно быстрее, чем любая другая страна в мире.
В 2024 году китайцы использовали около 300 тысяч новых промышленных роботов - это больше, чем во всём остальном мире вместе взятом.
Сегодня у них в цехах уже трудятся свыше двух миллионов роботов, работающих без перерывов днём и ночью.
Для сравнения: США в прошлом году добавили всего 34 тысячи, Япония - 44 тысячи, и по общему количеству роботов Китай опережает Америку в пять раз.
Этот рывок стал возможен благодаря долгосрочной государственной политике, напоминающей ту, что привела Китай к лидерству в электромобилях и ИИ: дешёвые кредиты, целевые субсидии и чёткие планы по автоматизации.
На заводах роботы уже давно не экзотика: они сварят, собирают, перемещают детали, а ИИ на фоне анализирует данные с оборудования, предсказывает износ и сокращает простои.
Особенно заметен разрыв в таких отраслях, как автомобилестроение и электроника, где каждая секунда на конвейере имеет значение.
При этом Китай быстро наращивает собственное производство: уже 60% устанавливаемых роботов теперь делают внутри страны.
Правда, самые точные датчики, приводы и чипы всё ещё ввозят из Германии и Японии.
А вот человекоподобные роботы, хоть и не учитываются в этих цифрах, тоже набирают обороты - базовые модели китайских стартапов стоят уже около $6 000.
Главное узкое место - нехватка специалистов по настройке и обслуживанию.
Но и тут Китай использует своё преимущество: огромный пул электриков и программистов ПЛК, а зарплаты инженеров-робототехников уже достигли $60 000 в год, что привлекает всё больше талантов.
Всё это создаёт мощный эффект: сочетание государственной поддержки, умных цепочек поставок и подхода, где программное обеспечение стоит во главе угла. В ближайшие годы это, скорее всего, будет означать более низкую себестоимость и более быстрые сроки поставок с китайских фабрик - по сравнению со многими конкурентами.
@ai_machinelearning_big_data
#ai #robots #ml
В 2024 году китайцы использовали около 300 тысяч новых промышленных роботов - это больше, чем во всём остальном мире вместе взятом.
Сегодня у них в цехах уже трудятся свыше двух миллионов роботов, работающих без перерывов днём и ночью.
Для сравнения: США в прошлом году добавили всего 34 тысячи, Япония - 44 тысячи, и по общему количеству роботов Китай опережает Америку в пять раз.
Этот рывок стал возможен благодаря долгосрочной государственной политике, напоминающей ту, что привела Китай к лидерству в электромобилях и ИИ: дешёвые кредиты, целевые субсидии и чёткие планы по автоматизации.
На заводах роботы уже давно не экзотика: они сварят, собирают, перемещают детали, а ИИ на фоне анализирует данные с оборудования, предсказывает износ и сокращает простои.
Особенно заметен разрыв в таких отраслях, как автомобилестроение и электроника, где каждая секунда на конвейере имеет значение.
При этом Китай быстро наращивает собственное производство: уже 60% устанавливаемых роботов теперь делают внутри страны.
Правда, самые точные датчики, приводы и чипы всё ещё ввозят из Германии и Японии.
А вот человекоподобные роботы, хоть и не учитываются в этих цифрах, тоже набирают обороты - базовые модели китайских стартапов стоят уже около $6 000.
Главное узкое место - нехватка специалистов по настройке и обслуживанию.
Но и тут Китай использует своё преимущество: огромный пул электриков и программистов ПЛК, а зарплаты инженеров-робототехников уже достигли $60 000 в год, что привлекает всё больше талантов.
Всё это создаёт мощный эффект: сочетание государственной поддержки, умных цепочек поставок и подхода, где программное обеспечение стоит во главе угла. В ближайшие годы это, скорее всего, будет означать более низкую себестоимость и более быстрые сроки поставок с китайских фабрик - по сравнению со многими конкурентами.
@ai_machinelearning_big_data
#ai #robots #ml
👍164🤩108👏31❤23🔥22💯11🤣6🎉4🤗2🤔1🤬1