🚨 The Information: DeepSeek тайно использует *запрещённые Nvidia Blackwell GPU* для обучения своей следующей модели
По данным The Information, DeepSeek тренирует новое поколение своей модели на *тысячах* Blackwell-чипов, которые формально запрещены к поставкам в Китай.
Схема выглядит так: серверы с GPU сначала устанавливают и проверяют в «фантомных» дата-центрах за рубежом, после чего их разбирают, декларируют как другое оборудование и снова собирают уже в китайских дата-центрах.
Схема показывает, насколько неэффективными остаются экспортные ограничения США, даже несмотря на давление Вашингтона и недавние обвинения в контрабанде против посредников.
Nvidia в спешке внедряет механизмы отслеживания местоположения GPU, которые могут фактически «отключать» нелегально ввезённые чипы.
Интересное следствие:
Китай проявляет слабый интерес к официально разрешённому H200, что может быть связано с тем, что у ведущих игроков уже есть доступ к более мощным - пусть и нелегальным - Blackwell.
https://www.theinformation.com/articles/deepseek-using-banned-nvidia-chips-race-build-next-model
@ai_machinelearning_big_data
#ai #news #Nvidia
По данным The Information, DeepSeek тренирует новое поколение своей модели на *тысячах* Blackwell-чипов, которые формально запрещены к поставкам в Китай.
Схема выглядит так: серверы с GPU сначала устанавливают и проверяют в «фантомных» дата-центрах за рубежом, после чего их разбирают, декларируют как другое оборудование и снова собирают уже в китайских дата-центрах.
Схема показывает, насколько неэффективными остаются экспортные ограничения США, даже несмотря на давление Вашингтона и недавние обвинения в контрабанде против посредников.
Nvidia в спешке внедряет механизмы отслеживания местоположения GPU, которые могут фактически «отключать» нелегально ввезённые чипы.
Интересное следствие:
Китай проявляет слабый интерес к официально разрешённому H200, что может быть связано с тем, что у ведущих игроков уже есть доступ к более мощным - пусть и нелегальным - Blackwell.
https://www.theinformation.com/articles/deepseek-using-banned-nvidia-chips-race-build-next-model
@ai_machinelearning_big_data
#ai #news #Nvidia
1😁67❤17👍11🔥11🤷♂2🤬2😨1
🧠 Qwen представляет режим Learn Mode!
Learn Mode - обучающий режим в Qwen Chat, который превращает модель в ИИ-репетора.
Построен на базе Qwen3-Max,
Что делает Learn Mode:
- Ведёт обучение через диалог
- Подстраивается под ваш уровень подготовки и темп
- Строит логические опоры, помогая работать со сложными темами
- Формирует индивидуальную траекторию обучения под ваш стиль мышления
Попробовать можно здесь: https://chat.qwen.ai/?inputFeature=learn
@ai_machinelearning_big_data
#Qwen
Learn Mode - обучающий режим в Qwen Chat, который превращает модель в ИИ-репетора.
Построен на базе Qwen3-Max,
Что делает Learn Mode:
- Ведёт обучение через диалог
- Подстраивается под ваш уровень подготовки и темп
- Строит логические опоры, помогая работать со сложными темами
- Формирует индивидуальную траекторию обучения под ваш стиль мышления
Попробовать можно здесь: https://chat.qwen.ai/?inputFeature=learn
@ai_machinelearning_big_data
#Qwen
❤44👍29🔥8✍4👏1🦄1
Их объединённый портрет, вдохновлённый культовой фотографией «Обед на небоскрёбе», украсил обложку.
В числе тех, кого редакция назвала главными архитекторами новой технологической эры: Илон Маск, Марк Цукерберг, Лиза Су (AMD), Джeнсен Хуанг (Nvidia), Сэм Альтман (OpenAI), Демис Хассабис (DeepMind), Дарио Амодей (Anthropic) и Фэй-Фэй Ли (World Labs).
Как отмечает издание, в 2025 году потенциал ИИ был полностью реализован, а эта группа визионеров окончательно утвердила наступление эпохи мыслящих машин.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥42❤17👍16🤬7😁5🍾2🦄1
This media is not supported in your browser
VIEW IN TELEGRAM
Кризис DRAM меняет рынок и подход к обучению современного ИИ.
✔️ Рынок захлестнул дефицит оперативной памяти и других накопителей: ИИ-гиганты выкупили огромные объёмы DRAM, HBM и NAND. Nvidia, по слухам, прекращает поставлять дистрибьюторам видеопамять в комплекте с GPU — теперь её нужно закупать отдельно. На текущий момент цены на SSD и оперативную память выросли на 50-100% по сравнению с началом года. Производители ноутбуков и смартфонов фиксируют задержки поставок, а комплект DDR5 на 64 ГБ уже стоит дороже PS5. 🤯
✔️ Мы спросили Гигачат, как кризис повлияет на развитие нейросетей и обучение моделей. ИИ-помощник формулирует так: "Дефицит памяти — это временный дисбаланс между взрывным ростом ИИ-индустрии и производственными мощностями, которые просто не успели масштабироваться под такой спрос. Высокая стоимость памяти заставляет компании переосмыслить подходы к обучению: вместо наращивания "железа напролом" фокус смещается на эффективные архитектуры и методы.". Подробнее — в видео.
@ai_machinelearning_big_data
#ai #llm #ml #ramcrisis #infrastructure
@ai_machinelearning_big_data
#ai #llm #ml #ramcrisis #infrastructure
Please open Telegram to view this post
VIEW IN TELEGRAM
🗿67❤17😁12🤣9👍8🔥3🤬2🥱2🤗1🦄1
Ряд значительных улучшений, по сравнению с GPT-5.1, особенно в визуальном понимании и сложных рассуждениях.
Приросты в бенчмарках говорят сами за себя:
• SWE-Bench Pro: 50.8% → 55.6%
• GPQA Diamond: 88.1% → 92.4%
• AIME 2025: 94.0% → 100%
• ARC-AGI-2: 17.6% → 52.9%
GPT-5.1 останется доступной платным пользователям ещё три месяца в статусе legacy.
Цены API: $1,75/1M input, $14/1M output (Thinking). Это дороже чем GPT-5.1 ($1,25/$10), но дешевле Gemini 3 Pro.
https://openai.com/index/introducing-gpt-5-2/
@ai_machinelearning_big_data
#chatgpt #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥103👍41❤26😁5🦄2☃1🤗1
Media is too big
VIEW IN TELEGRAM
ARC Prize зафиксировали рекорд GPT-5.2 Pro (X-High). Модель достигла точности 90,5% при стоимости вычислений $11,64 за задачу. Тесты ARC-AGI - это уникальные задачи, требующие навыков обобщения и логики, что исключает возможность запоминания паттернов из обучающей выборки.
Несмотря на успех, экономика процесса пока отстает от идеала. Стоимость решения одной задачи все еще в 58 раз превышает целевой показатель бенчмарка ($0,20), а до человеческого уровня (100% точности) сохраняется разрыв. На более сложном наборе ARC-AGI-2 модель показала результат 54,2%.
ARC Prize в сети Х
Спецификация Really Simple Licensing (RSL), позволяющая издателям диктовать условия лицензирования для ИИ-краулеров, получила статус официального стандарта. Технически, это расширение файла
robots.txt, которое дает возможность указывать правила компенсации за парсинг контента.RSL получил поддержку со стороны гигантов: стандарт внедрили Cloudflare, Akamai и Fastly. Это превращает RSL из простой декларации в рабочий механизм — провайдеры смогут блокировать на уровне CDN тех ботов, которые игнорируют условия лицензии.
Еще одна важная особенность версии 1.0 — гранулярный контроль видимости. Теперь ресурсы могут запретить использование своих материалов в генеративных ответах, сохраняя при этом позиции в классической поисковой выдаче.
rslstandard.org
Компании объявили о соглашении, которое меняет правила игры в сфере авторского права в ИИ. Начиная со следующего года, Sora сможет официально использовать образы Микки Мауса, Йоды и других героев студии. В рамках сделки Disney получает долю в OpenAI размером в $1 млрд, а ее инженеры - приоритетный доступ к API ChatGPT для внутренних разработок.
Для Disney, известной своей жесткой позицией по защите авторских прав это стратегический разворот. Вместо безуспешных попыток полностью запретить генерацию своих персонажей, корпорация решила возглавить процесс и монетизировать его.
Стороны обещают внедрить жесткие фильтры безопасности, а на Disney+ появится раздел с фанатскими видео, созданными в Sora.
openai.com
DeepMind представила апдейт для моделей синтеза речи Gemini Flash TTS и Pro TTS, заменяющий майские версии этого года. Разделение по задачам осталось прежним: Flash для real-time приложений, а Pro - для максимального качества.
Теперь модели жестче придерживаются системных промптов, задающих тон, настроение и ролевую модель спикера. Добавили контекстно-зависимое управление темпом: алгоритм автоматически замедляет речь на плотной информации и ускоряется там, где это уместно, либо строго следует явно заданным таймингам.
Также инженеры стабилизировали работу мульти-спикерных диалогов: голоса собеседников больше не «плывут» и остаются четко различимыми.
blog.google
Компания опубликовала исследование об эволюции взаимодействия с ИИ-ассистентом за последний год. Данные показывают смену аудитории: если в январе среди запросов доминировало программирование, то к концу года вектор сместился в сторону социальных тем. Это подтверждает выход технологии в мейнстрим - пользователи всё чаще видят в ИИ не просто умный поиск, а полноценного советчика.
Отчет также подсвечивает зависимость запросов от контекста. Мобильные устройства закрепили за собой роль карманных консультантов по здоровью и психологии. Время суток тоже влияет на содержание: глубокой ночью растет доля философских и экзистенциальных бесед.
Для разработчиков эти метрики важны: следующее поколение ассистентов должно уметь адаптироваться не только под текст запроса, но и под устройство и время обращения.
microsoft.ai
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍59❤20🔥7🦄2
MWS Cloud запускает сервис MWS GPU on-premises — сервис для тех, кому не подходит облако.
Серверы с графическими ускорителями устанавливаются на площадке предприятия или в дата-центре MWS Cloud.
Команда поможет подобрать конфигурацию под ваши задачи, установит оборудование и возьмёт на себя поддержку. Можно выбрать готовое решение из более чем 20 конфигураций или собрать индивидуальное. Всего доступно 7 видов GPU. Покупка или аренда — на ваше усмотрение.
Сервис особенно актуален для промышленных компаний с существующими on-premises системами и медицинских организаций, использующих ИИ для диагностики.
Все конфигурации и условия — на странице сервиса.
Серверы с графическими ускорителями устанавливаются на площадке предприятия или в дата-центре MWS Cloud.
Команда поможет подобрать конфигурацию под ваши задачи, установит оборудование и возьмёт на себя поддержку. Можно выбрать готовое решение из более чем 20 конфигураций или собрать индивидуальное. Всего доступно 7 видов GPU. Покупка или аренда — на ваше усмотрение.
Сервис особенно актуален для промышленных компаний с существующими on-premises системами и медицинских организаций, использующих ИИ для диагностики.
Все конфигурации и условия — на странице сервиса.
🔥14👍9❤7😁2🦄2🗿1💘1
PyRoki (Python Robot Kinematics) - это модульный, расширяемый и кроссплатформенный инструментарий, заточенный под задачи кинематической оптимизации и реализованный полностью на Python.
Фишка библиотеки - в предоставлении дифференцируемой модели прямой кинематики робота, которая строится на основе URDF-файлов, тем самым избавляя инженера от необходимости вручную прописывать кинематические цепи: система не только парсит описание робота, но и автоматически генерирует примитивы коллизий.
С точки зрения математического аппарата, PyRoki интегрируется с решателем Levenberg-Marquardt (через jaxls). Это дает возможность проводить оптимизацию на многообразиях, а также обрабатывать жесткие ограничения с помощью решателя на основе модифицированной функции Лагранжа.
Библиотека предлагает готовые реализации cost-функций: поза рабочего органа, коллизии с самим собой или объектами мира и метрики манипулируемости.
Если стандартного набора недостаточно, архитектура позволяет задавать свои функции затрат, используя как автоматическое дифференцирование, так и аналитические якобианы.
Благодаря базе JAX, библиотека кроссплатформенна: ее работа возможна на CPU, GPU и TPU.
Компиляция триггерится при первом запуске, а также каждый раз, когда меняются формы входных данных: например, количество целей или препятствий.
Чтобы избежать расходов на перекомпиляцию, рекомендуется использовать предварительный паддинг массивов, что позволяет векторизовать вычисления для входов с различными шейпами.
Также стоит учитывать, что в библиотеке отсутствуют планировщики, основанные на сэмплировании (графы, деревья), поэтому задачи глобального планирования пути придется решать внешними средствами.
На данный момент PyRoki работает исключительно с кинематическими деревьями; замкнутые механизмы или параллельные манипуляторы не поддерживаются.
Список доступных типов джоинтов ограничен 4 позициями: вращательные, непрерывные, призматические и фиксированные. Любые другие типы соединений, встреченные в URDF, будут автоматически интерпретироваться системой как фиксированные.
Для геометрии коллизий набор примитивов также фиксирован: поддерживаются сферы, капсулы, полупространства и карты высот.
Если ваша модель использует сложные меши, коллизии для них будут аппроксимироваться капсулами.
В вопросах производительности, особенно в сценариях с интенсивными проверками коллизий, PyRoki, вероятно, уступает CuRobo, хотя, как говорится в документации - сравнительные тесты скорости и точности авторами пока не проводились.
@ai_machinelearning_big_data
#AI #ML #Robotics #Pyroki #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥13❤7👌1🤗1🦄1
Ускорит ли ИИ технологический и научный прогресс?
В гостях подкаста «Деньги любят техно» побывал Арутюн Аветисян, директор Института системного программирования РАН, академик, доктор физико‑математических наук.
Интересно послушать и посмотреть всем, кто задумывается о том:
— как строится карьера учёного в современной реальности;
— какие качества выделяют перспективного исследователя;
— что превращает гипотезу в реальный прорыв;
— способен ли ИИ ускорить технологический прогресс;
— какие вызовы несёт дальнейшая цифровизация и роботизация;
— как строить продуктивное взаимодействие между наукой, бизнесом и open‑source‑сообществом.
Ведущий — Денис Суржко, заместитель руководителя департамента анализа данных и моделирования ВТБ.
Эпизод точно будет полезен дата‑сайентистам и исследователям, которые задумываются о карьерных перспективах и хотят развиваться в своих сферах.
#Podcast #AI #ML #DataScience
Посмотреть 👈
Послушать 👈
В гостях подкаста «Деньги любят техно» побывал Арутюн Аветисян, директор Института системного программирования РАН, академик, доктор физико‑математических наук.
Интересно послушать и посмотреть всем, кто задумывается о том:
— как строится карьера учёного в современной реальности;
— какие качества выделяют перспективного исследователя;
— что превращает гипотезу в реальный прорыв;
— способен ли ИИ ускорить технологический прогресс;
— какие вызовы несёт дальнейшая цифровизация и роботизация;
— как строить продуктивное взаимодействие между наукой, бизнесом и open‑source‑сообществом.
Ведущий — Денис Суржко, заместитель руководителя департамента анализа данных и моделирования ВТБ.
Эпизод точно будет полезен дата‑сайентистам и исследователям, которые задумываются о карьерных перспективах и хотят развиваться в своих сферах.
#Podcast #AI #ML #DataScience
Посмотреть 👈
Послушать 👈
🙈10❤8👍5🤗4🥰3🥱3🙏1🦄1🙊1
ОMC25 - крупнейший набор данных по молекулярным кристаллам, рассчитанный методом теории функционала плотности (DFT) в пакете VASP.
В основе датасета лежат структуры, полученные из траекторий релаксации молекулярных кристаллов. Сами исходные кристаллы были сгенерированы с помощью инструмента Genarris 3.0, который, в свою очередь, использовал молекулы из известного набора OE62. Это обеспечивает преемственность данных и четкую привязку к проверенным химическим структурам, но масштаб здесь совершенно иной.
Тренировочная часть содержит почти 25 млн. фреймов. Это данные по 207 тыс. кристаллов, которые, в свою очередь, произошли от 44 тыс. уникальных молекул.
Валидационная часть меньше, но тоже весовая: около 1,4 миллиона кадров. Данные упакованы в формате ase-db как объекты LMDBDatabase, что является стандартом в задачах машинного обучения для химии.
Исходные кристаллы были созданы программой Genarris 3.0. Она, в свою очередь, использовала молекулы из популярного набора OE62. Так что у данных есть четкая привязка к проверенным химическим структурам.
Работа с данными сета происходит через библиотеку
fairchem. Каждая структура хранится как объект ASE Atoms, что привычно для инженеров, работающих с атомистическим моделированием. Ключевые метки для обучения моделей включают полную энергию DFT, силы, действующие на атомы, и тензор напряжений . Это "каноническая троица" для обучения межатомных потенциалов. Помимо физических величин, в атрибуте
atoms.info зашиты критически важные метаданные.Помимо самого набора, авторы выложили базовый чекпоинт eSEN-S, обученный на всём OMC25.
@ai_machinelearning_big_data
#AI #ML #Dataset #FAIR #Chemistry
Please open Telegram to view this post
VIEW IN TELEGRAM
❤63👍14🔥8🦄1
Занимательная история Дэвида Ноэля о том, как он купил ИИ-оборудование корпоративного класса, разработанное для серверных стоек с жидкостным охлаждением, которое затем переоборудовал под воздушное охлаждение, потом снова переоборудовал под водяное, пережил множество ситуаций, близких к катастрофе, и, в итоге получил настольный компьютер, способный запускать модели с 235 миллиардами параметров дома.
Это рассказ о сомнительных решениях и нестандартном подходе к решению проблем. И немного о том, что происходит, когда пытаешься превратить оборудование для ЦОДа в домашний сетап.
Если вы когда-либо задавались вопросом, что нужно для запуска действительно крупных моделей локально, или если вы просто хотите посмотреть, как кто-то разбирает оборудование стоимостью 80 000 долларов, полагаясь лишь на надежду и изопропанол, то эта статья не оставит вас равнодушным.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤37👍16🔥6🦄6🆒1