Media is too big
VIEW IN TELEGRAM
EVMbench - специализированный фреймворк, который проверяет, насколько хорошо языковые модели справляются с 3 задачами: находят баги в коде смарт-контрактов, эксплуатируют их в контролируемой среде и исправляют без нарушения логики контракта.
Тестовая база построена на реальных примерах багов, найденных ранее в ходе аудитов и профильных соревнований.
Авторы рассчитывают, что EVMbench станет отраслевым стандартом, что важно для защиты активов в секторе децентрализованных финансов, где исправить ошибку после деплоя уже невозможно.
openai.com
Теперь в NotebookLM сгенерированные презентации можно дорабатывать прямо в диалоге с ИИ, без ручной правки каждого слайда. Достаточно написать, что изменить, и модель перестроит контент сама.
Второе обновление - экспорт в PPTX. Готовую презентацию можно скачать и открыть в Microsoft PowerPoint. Поддержка Google Slides анонсирована, но пока не запущена.
NotebookLM в сети Х
ИИ-поисковик прекратил эксперименты с рекламной монетизацией, посчитав, что она фундаментально противоречит миссии сервиса. Несмотря на то, что стартап одним из первых начал тестировать спонсорские ответы в 2024 году, сейчас руководство решило свернуть эту инициативу.
Представители компании пояснили, что их главная ценность - это точность и объективность информации. Даже если промо-блоки четко маркированы и технически не влияли на генерацию текста, сам факт их наличия заставляет людей сомневаться в честности ответов.
В Perplexity пришли к выводу, что для удержания платных подписчиков пользователь должен быть уверен, что получает лучший возможный ответ, не искаженный коммерческими интересами рекламодателей.
ft.com
В чат-бот добавили модель Lyria 3 от DeepMind. На вход она принимает текст, картинку или видео, а если указать в запросе имя исполнителя, Gemini создаст трек в похожем стиле (но скопировать артиста напрямую не получится).
Инструмент в бете, но уже пишет полноценные треки на английском, немецком, испанском, французском, хинди, японском, корейском и португальском языках. Вся музыка, созданная через Lyria 3, получает метку SynthID.
blog.google
Команда инженеров-химиков института адаптировала архитектуру LLM для нужд биотехнологий. Созданный алгоритм помогает промышленным дрожжам Komagataella phaffii эффективнее производить сложные белки, используемые в вакцинах и препаратах от рака.
Суть разработки - решении проблемы генетических синонимов. Одна и та же аминокислота может кодироваться разными триплетами ДНК (кодонами), но на классических методах оптимизации выбор самых часто встречающихся вариантов нередко приводит к дефициту ресурсов клетки и снижению выработки.
Инженеры обучили модель на геноме дрожжей, заставив ее воспринимать ДНК как текст. ИИ не просто запомнил частоту кодонов, но и усвоил скрытый контекст — «синтаксис» их взаимодействия. В тестах на реальных белках, включая человеческий гормон роста и моноклональные антитела, последовательности от ИИ превзошли результаты лучших коммерческих инструментов в 5 случаях из 6.
Технология обещает сократить расходы на разработку новых лекарств, которые на этапе подготовки производства сейчас составляют до 20% от общего бюджета.
news.mit.edu
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤41👏38👍14🔥10🤩8🤔5😎5🎉3🤝1🆒1
Компания сообщила о масштабной оптимизации инфраструктуры обучения больших языковых моделей: качество и объёмы разработки сохранены, а годовая экономия составила 4,8 млрд ₽ (≈ 400 млн ₽ в месяц).
YCCL (Yet Another Collective Communication Library) — собственная разработка Яндекса для ускорения коллективных операций и межпроцессорного взаимодействия в кластерах.
С её помощью удалось:
- в 2 раза ускорить обмен данными между GPU,
- сократить объём передаваемой информации
- перенести часть управляющей логики с GPU на CPU, снизив нагрузку на графические процессоры.
Сопоставимые по уровню решения есть только у крупнейших игроков рынка (Meta, AMD и ряд китайских бигтех-компаний).
Компания внедрила вычисления в формате FP8, что дало:
ускорение обучения до 30%, двукратное снижение коммуникаций между GPU.
Размер батча увеличен до 16–32 млн токенов, что уменьшило простой GPU и повысило загрузку и эффективность использования кластеров.
Дополнительно улучшили стабильность инфраструктуры и сократили затраты, связанные с перезапусками обучения.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍105🤣71🔥27❤20👏8🤩7😁5🤬3😢2🤔1🎉1
Y Combinator выложил на Youtube почти часовой выпуск подкаста Lightcone Podcast с Борисом Черным, создателем Claude Code в Anthropic. Мы собрали для вас ключевые темы, цитаты и утверждения.
Стратегия Anthropic при создании инструментов заключается в опережении текущих возможностей ИИ.
Главный совет фаундерам: не подстраивайте продукт под ограничения сегодняшних моделей. Стройте его для модели, которая выйдет через полгода. Если сегодня модель глупая, через 6 месяцев она поумнеет, и ваш продукт должен быть к этому готов.
Принцип "Scaffolding" : обвязка вокруг модели может улучшить производительность на 10-20%, но следующая версия модели часто нивелирует этот выигрыш. Либо вы строите обвязку для временного прироста, либо ждете новую модель и получаете прирост бесплатно.
CLAUDE.md часто переусложняют. Борис рекомендует удалять его и начинать заново, так как с каждой новой моделью требуется меньше инструкций.
Внутренняя статистика Anthropic показывает радикальное изменение в процессах разработки.
Инженер Anthropic сейчас в 1000 раз продуктивнее инженера Google на пике их формы.
После внедрения Claude Code продуктивность внутри Anthropic выросла на 150% (измеряется по количеству PR, коммитов и их жизненному циклу). Ранее годовой рост на 2% считался успехом (личный опыт Бориса у Цукерберга).
CEO Anthropic предсказывал, что 90% кода будет писать ИИ. Борис утверждает, что с выходом Opus 4.5 эта цифра достигла 100%.
Борис удалил свою IDE. Он не редактирует ни одной строчки кода вручную. Весь процесс идет через Claude Code в терминале.
Первый инструмент, который дали модели был bash.
Инженер Anthropic Крис нашел утечку памяти, просто попросив Claude Code: "Найди утечку". Агент снял heap dump, написал инструмент для анализа дампа, нашел утечку и предложил фикс быстрее человека.
Рекурсивная отладка: можно загрузить транскрипт сессии кодинга обратно в Claude, чтобы отладить самого агента.
Идея CLAUDE.md родилась из наблюдения скрытого спроса: инженеры сами писали markdown-файлы с контекстом для скармливания модели.
Личный CLAUDE.md Бориса содержит всего две строки:
1. При создании PR включать auto-merge.
2. Постить ссылку на PR во внутренний канал Slack.
Если Claude совершает ошибку, команда тегает его в PR (командой /add claude), чтобы он исправил код и обновил правила в CLAUDE.md для предотвращения рецидивов.
Эволюция идет от простого выполнения команд к сложному планированию и роям агентов.
Plan Mode: Режим, где модель сначала расписывает шаги, а потом выполняет.
Промпт для Plan Mode технически прост: к запросу добавляется фраза "Пожалуйста, не пиши код, а сначала спланируй".
Функция "Plugins" была написана роем агентов за выходные без участия человека: инженеры дали спецификацию и доступ к Asana. Главный агент спавнил субагентов, раздавал задачи из доски, а те писали код.
Стратегия "Mama Claude": основной инстанс Claude Code рекурсивно вызывает субагентов (другие инстансы Claude Code) для решения подзадач.
Биомодальное распределение эффективных сотрудников:
Гипер-специалисты: кандидаты с глубоким знанием devtools, runtime, оптимизаций.
Гипер-дженералисты: люди, совмещающие роли Product, Infra, Design.
Product Engineer исчезает как термин, все становятся "Builders".
В Anthropic код пишут все: дизайнеры, финансисты и менеджеры.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👏70❤37👍22🤓8😁7💯7🤣4🔥3🎉3🤬1
Forwarded from Анализ данных (Data analysis)
Генеральный директор OpenAI Сэм Альтман и генеральный директор Anthropic Дарио Амодей показательно отказались взяться за руки во время группового фото на саммите India AI Impact Summit, в то время как другие участники на сцене сцепили руки для символического снимка.
😁118🤔41❤11🤬11🤝11🤨8👾7👍6😐5🥱3🙈2
Forwarded from Data Secrets
Принципы работы Nested Learning и Titans вдохновлены идеями российских ученых
Google идет по дорожке, заданной учениками Михаила Бурцева — Юрием Куратовыи и Айдаром Булатовым из AIRI. Речь об их идеях по RMT, использованных при создании нового подхода к архитектурам.
У большинства мировых команд по созданию ИИ есть проблема с контекстом — модели забывают почти всё, что было дальше условных 50 страниц. При этом новые данные часто стирают старые. Недавно Google предложили рассматривать модели как набор вложенных оптимизационных задач. Их архитектура HOPE учится не просто предсказывать слова, но решать, что забыть, а что помнить вечно.
Звучит знакомо?
Одними из первых архитектур, реально работающих с длинным контекстом, были RMT/ARMT, начальную идею которых в 2020 году предложил Михаил Бурцев. А уже в 2022 году ребята из AIRI показали, что контекст можно расширять не в лоб, а архитектурно — через рекуррентные механизмы памяти. Смотрим в литературу, на которую ссылаются в Google, и видим те же тезисы.
В общем, парадигма развития разработки нейросетей не создается в вакууме — у неё есть авторы.
Google идет по дорожке, заданной учениками Михаила Бурцева — Юрием Куратовыи и Айдаром Булатовым из AIRI. Речь об их идеях по RMT, использованных при создании нового подхода к архитектурам.
У большинства мировых команд по созданию ИИ есть проблема с контекстом — модели забывают почти всё, что было дальше условных 50 страниц. При этом новые данные часто стирают старые. Недавно Google предложили рассматривать модели как набор вложенных оптимизационных задач. Их архитектура HOPE учится не просто предсказывать слова, но решать, что забыть, а что помнить вечно.
Звучит знакомо?
Одними из первых архитектур, реально работающих с длинным контекстом, были RMT/ARMT, начальную идею которых в 2020 году предложил Михаил Бурцев. А уже в 2022 году ребята из AIRI показали, что контекст можно расширять не в лоб, а архитектурно — через рекуррентные механизмы памяти. Смотрим в литературу, на которую ссылаются в Google, и видим те же тезисы.
В общем, парадигма развития разработки нейросетей не создается в вакууме — у неё есть авторы.
❤44👏28👍22🤔6🤣4🥰2🤨2
Forwarded from Rust
🦀 Strand-Rust-Coder-14B - модель, заточенная специально под генерациию Rust кода.
Это не универсальный «кодинг-ассистент».
Модель дообучена именно на экосистеме Rust и пишет код на уровне опытного разработчика:
- идиоматичный Rust
- безопасная работа с памятью
- корректные async и ownership-паттерны
- акцент на производительность и системные задачи
Большинство моделей хорошо знают Python и JavaScript, но часто «путаются» в borrow checker, lifetimes и сложных Rust-конструкциях.
Strand-Rust-Coder решает именно эту проблему - фокус на системном программировании, low-level задачах и performance-critical приложениях.
https://huggingface.co/Fortytwo-Network/Strand-Rust-Coder-14B-v1
@rust_code
Это не универсальный «кодинг-ассистент».
Модель дообучена именно на экосистеме Rust и пишет код на уровне опытного разработчика:
- идиоматичный Rust
- безопасная работа с памятью
- корректные async и ownership-паттерны
- акцент на производительность и системные задачи
Большинство моделей хорошо знают Python и JavaScript, но часто «путаются» в borrow checker, lifetimes и сложных Rust-конструкциях.
Strand-Rust-Coder решает именно эту проблему - фокус на системном программировании, low-level задачах и performance-critical приложениях.
https://huggingface.co/Fortytwo-Network/Strand-Rust-Coder-14B-v1
@rust_code
1👍82🔥18❤12👏11💯5🤔3😁2
⚡️ VK внедряет VLM в поиск VK Видео
VK начала внедрение визуально-языковых моделей в поисковые системы своих продуктов. Технология уже работает в VK Видео. Теперь система анализирует не только название и описание ролика, но и сами кадры, звук и видеоряд.
Тестирование гипотез ускорилось в 5 раз, новые улучшения внедряются заметно быстрее, а поиск будет развиваться динамичнее.
Технология также усилит векторный поиск. Система будет опираться не только на семантическое совпадение слов, но и на реальное содержание видео через анализ аудио и визуальных признаков.
Подобные мультимодальные подходы развивают Microsoft, Google и TikTok. Обновление поэтапно появится и в других сервисах VK.
@ai_machinelearning_big_data
#news #ai #ml #VK
VK начала внедрение визуально-языковых моделей в поисковые системы своих продуктов. Технология уже работает в VK Видео. Теперь система анализирует не только название и описание ролика, но и сами кадры, звук и видеоряд.
Тестирование гипотез ускорилось в 5 раз, новые улучшения внедряются заметно быстрее, а поиск будет развиваться динамичнее.
Технология также усилит векторный поиск. Система будет опираться не только на семантическое совпадение слов, но и на реальное содержание видео через анализ аудио и визуальных признаков.
Подобные мультимодальные подходы развивают Microsoft, Google и TikTok. Обновление поэтапно появится и в других сервисах VK.
@ai_machinelearning_big_data
#news #ai #ml #VK
1🤣96👍71🔥18👏7🥱7🤷♂5🗿5😁2🤔2🌚2😴1
Forwarded from Анализ данных (Data analysis)
⚡️ Релиз Gemini 3.1 Pro - новый уровень интеллекта моделей
Google официально представила Gemini 3.1 Pro, и результаты выглядят серьёзно: модель показала 77,1% в одном из самых сложных тестов на абстрактное мышление — ARC-AGI-2.
- Резкий скачок качества
Результат почти в 2 раза выше, чем у предыдущей версии
- Обгоняет конкурентов
Gemini 3.1 Pro опережает Opus 4.6 и GPT-5.2 в задачах на обобщение и логическое мышление
- Сильнее в реальных сценариях
- программирование
- агентные задачи
- работа с новыми паттернами без примеров
- Новые возможности
Модель может генерировать анимированные SVG из текста и решать логические задачи, которых не было в обучающей выборке — это важный шаг к более универсальному AI.
Попробовать Gemini 3.1 Pro уже можно в Google AI Studio: blog.google/innovation-and-ai/models-and-research/gemini-models/gemini-3-1-pro/
@ai_machinelearning_big_data
Google официально представила Gemini 3.1 Pro, и результаты выглядят серьёзно: модель показала 77,1% в одном из самых сложных тестов на абстрактное мышление — ARC-AGI-2.
- Резкий скачок качества
Результат почти в 2 раза выше, чем у предыдущей версии
- Обгоняет конкурентов
Gemini 3.1 Pro опережает Opus 4.6 и GPT-5.2 в задачах на обобщение и логическое мышление
- Сильнее в реальных сценариях
- программирование
- агентные задачи
- работа с новыми паттернами без примеров
- Новые возможности
Модель может генерировать анимированные SVG из текста и решать логические задачи, которых не было в обучающей выборке — это важный шаг к более универсальному AI.
Попробовать Gemini 3.1 Pro уже можно в Google AI Studio: blog.google/innovation-and-ai/models-and-research/gemini-models/gemini-3-1-pro/
@ai_machinelearning_big_data
1🔥120⚡38❤37👍12🤩11🙊10😴9🤷♂6👏6🌭5🙈5
Media is too big
VIEW IN TELEGRAM
Команда Nerve переходит в OpenAI в рамках сделки формата acqui-hire. Технологии стартапа будут интегрированы в существующие продукты OpenAI для улучшения механизмов поиска на рабочих местах.
До поглощения Nerve работала как единый хаб. Система умела извлекать данные из корпоративных документов, электронной почты, Google Drive и Slack, заменяя рутинный ручной поиск автоматизированными сценариями.
Наработки Nerve станут инфраструктурным компонентом для создания будущих ИИ-агентов, способных самостоятельно оперировать корпоративной информацией и выполнять сложные многошаговые задачи.
usenerve.com
Китайская корпорация активно нанимает инженеров и исследователей в Сан-Хосе, Лос-Анджелесе и Сиэтле для лаборатории Seed.Перед кандидатами ставятся задачи по подготовке датасетов для LLM, улучшению алгоритмов генерации видео и изображений, а также разработка научных моделей для дизайна лекарственных препаратов.
Отдельный фокус сделан на проекте Seed Edge Research, цель которого в создании систем с человекоподобными способностями к обучению.
Агрессивный наем происходит на фоне многолетнего давления американских регуляторов. Несмотря на это, ByteDance явно не планирует уступать технологическую гонку и усиливает свои R&D-центры на территории конкурентов.
bloomberg.com
В рамках проекта Project Silica инженеры решили фундаментальную проблему деградации носителей в дата-центрах. В Nature вышла статья о важном сдвиге: команда отказалась от дорогого чистого кварца в пользу доступного боросиликатного стекла. Фемтосекундные лазеры "прожигают" в пластине толщиной 2 мм сотни слоев информации
Фишка исследования — изобретение «фазовых вокселей». Раньше методы опирались на поляризацию, а новый подход изменяет фазу стекла и требует лишь одного лазерного импульса на воксель. Чтобы разобрать эту плотную трехмерную структуру и убрать искажения, Microsoft подключила нейросети. Скорость записи подняли, запустив несколько лучей параллельно, а само устройство упростили: теперь для чтения хватает одной камеры вместо четырех.
Стеклянный носитель не боится воды, высоких температур и пыли. Тесты на старение подтвердили, что записанная информация останется неизменной минимум несколько тысячелетий. На этом исследовательская часть Project Silica закончена. Технология готова, теперь на ее основе можно строить хранилища.
microsoft.com
Новая функция Photoshoot - часть маркетинговой платформы Pomelli. Инструмент ориентирован на малый и средний бизнес, он превращает через Nano Banana фотографии товаров в качественные студийные и лайфстайл-кадры без затрат на продакшен.
Платформа автоматически парсит сайт компании, извлекает фирменные цвета, шрифты и общую эстетику бренда для применения к генерируемому контенту. Сервис предлагает готовые визуальные пресеты, замену фона по текстовому запросу и перенос стиля с референсов. Пока это бесплатная бета, но только для США, Канады, Австралии и Новой Зеландии.
blog.google
Phoenix-4 покадрово генерирует каждый пиксель лица и головы виртуального собеседника, опираясь на датасет из тысяч часов реальных диалогов.
Киллер-фича Phoenix-4 в способности анализировать контекст беседы и демонстрировать эмпатию. Модель знает более 10 эмоций и умеет плавно переключаться между ними в реальном времени. Разработчики заверяют, что тем самым победили эффект «зловещей долины».
Технически все серьезно: HD-видео, 40 кадров в секунду. Tavus предлагает использовать это в продажах, обучении и медицине - там, где человеку важно внимание.
tavus.io
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍46❤33🔥12👏3🌚3🥰2
Создатели Claude проанализировали миллионы взаимодействий в Claude Code и через публичный API с помощью их инструмента Clio, чтобы понять, сколько автономии люди реально дают агентам, в каких доменах те работают и насколько рискованны их действия.
За 3 месяца медианная длина самых долгих сессий в Claude Code почти удвоилась - с 25 до более чем 45 минут непрерывной работы. Причем рост плавный и не коррелирует с релизами новых моделей.
Это значит, что дело не только в возможностях модели, а в том, как пользователи выстраивают взаимодействие с агентом.
Среди тех, кто только начинает пользоваться Claude Code, около 20% сессий запускают с полным авто-апрувом, это когда агент выполняет все действия без подтверждений.
У опытных пользователей эта доля больше 40%. Плюс они чаще прерывают агента вручную.
Аnthropic предполагает, что это не потому, что теряется доверие, а потому что они берутся за более сложные задачи и лучше понимают, когда нужно вмешаться.
На самых сложных задачах Claude Code останавливается и задает уточняющий вопрос вдвое чаще, чем по принудительному прерыванию человеком.
Почти половина всей агентной активности через API - за разработкой ПО.
Есть прирост использования в медицине, финансах и кибербезопасности, но пока в небольших объемах.
По итогу исследования, Аnthropic пришла к выводу, что эффективный надзор за агентами требует не только технических ограничений, но и новой инфраструктуры пост-деплойного мониторинга и новых паттернов взаимодействия - где и человек, и агент совместно управляют автономией и рисками.
Текущие модели, по данным компании, технически способны на большую самостоятельность, чем им позволяют на практике.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42👏29🤔29💋24😎18😢17🎉17🤣15❤14🫡10👨💻9
AI уже не запрещают на собеседованиях – его требуют
В Циане изменили подход к найму: кандидатам в Product & Technology и HR рекомендуют выполнять тестовые задания и live coding с помощью AI-ассистентов.
Компания оценивает не только результат, но и то, как человек работает с AI:
- качество взаимодействия с инструментом
- скорость решения задач
- умение проверять и дорабатывать ответы
- соблюдение принципов безопасного и этичного использования
Сегодня более 75% разработчиков в компании уже используют AI в работе.
По словам Максима Радюкова, директора по информационным технологиям Циана, владение AI-инструментами становится нормой рынка, а инвестиции в эти навыки – ключевым конкурентным преимуществом.
В планах – масштабировать подход на всех сотрудников.
Вывод
Раньше на собеседовании проверяли, умеешь ли ты кодить.
Теперь – умеешь ли ты эффективно работать вместе с AI.
AI перестаёт быть «читом» – он становится базовым рабочим инструментом.
В Циане изменили подход к найму: кандидатам в Product & Technology и HR рекомендуют выполнять тестовые задания и live coding с помощью AI-ассистентов.
Компания оценивает не только результат, но и то, как человек работает с AI:
- качество взаимодействия с инструментом
- скорость решения задач
- умение проверять и дорабатывать ответы
- соблюдение принципов безопасного и этичного использования
Сегодня более 75% разработчиков в компании уже используют AI в работе.
По словам Максима Радюкова, директора по информационным технологиям Циана, владение AI-инструментами становится нормой рынка, а инвестиции в эти навыки – ключевым конкурентным преимуществом.
В планах – масштабировать подход на всех сотрудников.
Вывод
Раньше на собеседовании проверяли, умеешь ли ты кодить.
Теперь – умеешь ли ты эффективно работать вместе с AI.
AI перестаёт быть «читом» – он становится базовым рабочим инструментом.
👍56😁20🤝19❤5🤔5🔥3👏3👨💻3🎅2🥰1👾1
SkillsBench — исследование и первый бенчмарк, где Agent Skills тестируются как самостоятельный артефакт.
Авторы из 15+ топовых университетов взяли 84 задачи из 11 доменов, запустили 7 конфигураций моделей (Claude Code с Opus/Sonnet/Haiku 4.5 и 4.6, Gemini CLI с Gemini 3 Pro/Flash, Codex с GPT-5.2) и проверили 3 условия: без Skills, с готовыми Skills и с самостоятельно сгенерированными Skills. Итого: 7 308 траекторий с детерминированными верификаторами на pytest.
Готовые Skills в среднем поднимают pass rate на 16,2 процентных пункта: с 24,3% до 40,6%. Но картина неоднородная: в медицине прирост составил +51,9%, для производства — +41,9%, тогда как в разработке ПО всего +4,5%.
Это объяснимо: там, где модели плохо покрыты обучением (клинические протоколы, промышленные воркфлоу), Skills дают максимальный эффект. Там, где модель и так знает домен - почти ничего.
Когда моделям предлагали сначала написать нужные гайды, а потом решать задачу, средний результат упал на 1,3% по сравнению с работой вообще без Skills. Только Claude Opus 4.6 показал скромный плюс (+1,4%), а GPT-5.2 просел на 5,6%.
Иными словами - модели не умеют надежно создавать то знание, которым умеют пользоваться.
Оптимальный вариант: 2–3 модуля, прирост +18,6%. При 4 и более - всего +5,9%. Подробная документация вообще дает отрицательный эффект: –2,9%, с ней агент буквально тонет в контексте.
Показательна и стоимость решения задач: Haiku 4.5 со Skills обходит Opus 4.5 без Skills — меньшая и более дешевая модель с готовыми Skills бьет старшую модель без них.
Gemini 3 Flash при этом показал лучший абсолютный результат среди всех конфигураций - 48,7% со Skills при цене $0,57 за одну задачу против $1,06 у Gemini 3 Pro.
@ai_machinelearning_big_data
#AI #ML #LLM #Benchmark #Skills
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🤓13❤🔥6❤5🤔4👏3👌2🥰1