Data Analysis / Big Data – Telegram
Data Analysis / Big Data
2.79K subscribers
575 photos
3 videos
2 files
2.97K links
Лучшие посты по анализу данных и работе с Big Data на русском и английском языке

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels
Download Telegram
Масштабный анализ данных астрометрического обзора Gaia DR3

В данной работе представлен комплексный анализ звёздного населения Млечного Пути на основе данных миссии Gaia DR3. Рассматриваются методы массовой выгрузки и обработки десятков миллионов астрономических объектов с использованием распределённой архитектуры Map/Reduce. Построены ключевые распределения: расстояния, фотометрические величины (G, BP, RP), собственные движения, HR‑диаграмма, а также карта небесной сферы. Проведен анализ погрешностей измерений и выявлены наблюдательные и селекционные эффекты.


Читать: https://habr.com/ru/articles/979722/

#ru

@big_data_analysis | Другие наши каналы
Аналитическая инфраструктура для сбора и исследования данных Steam: архитектура, пайплайны, результаты

Steam — одна из крупнейших платформ цифровой дистрибуции игр, и одновременно огромный источник данных: каталоги игр, отзывы, достижения, ценовые метрики, активность игроков, региональные различия и многое другое. Однако прямого доступа к агрегированным данным у исследователей нет — их необходимо собирать вручную через Steam Web API и сторонние сервисы.

В этом проекте мы разработали полноценный программный комплекс для автоматизированного сбора, хранения и анализа данных Steam. Построили двухуровневую архитектуру хранилища, реализовали оркестрацию чанков, разработали пайплайны работы с API и конфигурацию параллельного масштабирования. На основе собранных данных сформирован датасет объёмом десятки тысяч игр и сотни тысяч пользователей — и проведён базовый аналитический обзор рынка.


Читать: https://habr.com/ru/articles/979792/

#ru

@big_data_analysis | Другие наши каналы
Ловись, лид, большой и маленький

Привет, Хабр!

Меня зовут Максим Ломаев, и, перед тем как начать, хочу предупредить, что эта статья — отчасти эксперимент. Честно говоря, даже не уверен, насколько он удачный, и могу предположить, что подобный формат не всем придётся по вкусу. Но всё же я решился на публикацию, потому что хочу поделиться наблюдениями, которые, на мой взгляд, заслуживают внимания, даже если звучат неожиданно или спорно.

Речь пойдёт о новых методах нездоровой конкуренции с использованием больших данных и автоматизированных процессов. Эта статья о том, как ваши конкуренты, анализируя BigData мобильных операторов, получают список потенциальных клиентов, которые к вам уже обращались.

Таких кейсов в публичном поле почти нет, но кража клиентов уже ведётся. Если вам не хочется погружаться в художественную предысторию моего повествования, сразу переходите к главе 3 «Научная». Там — суть проблемы, без прикрас и обёрток.


Читать: https://habr.com/ru/companies/ntc-vulkan/articles/979248/

#ru

@big_data_analysis | Другие наши каналы
Практический опыт StarRocks: импорт JSON и CSV из Kafka с помощью Routine Load

В архитектуре потоковой обработки данных Kafka, как высокопроизводительная очередь сообщений, обычно используется для агрегации данных, а StarRocks, как высокопроизводительная аналитическая СУБД, отвечает за хранение и анализ. С помощью Routine Load можно стабильно и эффективно загружать в StarRocks данные в форматах JSON и CSV из Kafka.


Читать: https://habr.com/ru/articles/980134/

#ru

@big_data_analysis | Другие наши каналы
Обзор Lakehouse: архитектура, которая объединяет порядок и хаос

Вопрос: что же такого прорывного добавили в архитектуру, чтобы она стала считаться чем-то новым с точки зрения инженеров, а не маркетологов?

Ответ: фундаментально изменилась парадигма хранения и обработки данных.

В отличие от традиционных подходов, где Data Warehouse оперировал исключительно структурированными данными в табличной форме, а Data Lake работал с файлами в их исходном виде, разработчики Lakehouse сумели соединить лучшие качества обеих архитектур.

Ключевым отличием стал формат OTF — Open Table Format, через который удалось реализовать единый стандарт доступа к данным и 4 технологически-культурных сдвига. Перечислю их: ...


Читать: https://habr.com/ru/companies/cinimex/articles/978522/

#ru

@big_data_analysis | Другие наши каналы
👍1
Инструменты и методы синхронизации данных из распространенных СУБД в StarRocks

В статье разберем, как синхронизировать данные из Oracle, MySQL, SQL Server, PostgreSQL, Kafka и MongoDB в StarRocks. Сравним Flink+CDC+SMT, DataX, Routine Load и Python по применимости, ограничениям и удобству эксплуатации, а также дадим рекомендации по выбору под разные сценарии.


Читать: https://habr.com/ru/articles/980392/

#ru

@big_data_analysis | Другие наши каналы
построение интеллектуальной системы вопросов и ответов и корпоративной базы знаний на базе StarRocks + DeepSeek

Типовые сценарии на базе StarRocks + DeepSeek. DeepSeek: генерация качественных эмбеддингов и ответов, StarRocks: высокоэффективный векторный поиск и хранение.Вместе они образуют основу для точных и масштабируемых AI‑решений.


Читать: https://habr.com/ru/articles/980410/

#ru

@big_data_analysis | Другие наши каналы
Есть ли жизнь после Vertica или миграция DWH в Lakehouse

Всем привет! Меня зовут Дмитрий Рейман, я техлид аналитической платформы Авито.

Последний раз мы подробно писали о нашей платформе почти четыре года назад — в статье «Эволюция хранилища данных в Авито». С тех пор аналитическая платформа сильно изменилась — и по масштабу, и по сложности.


Читать: https://habr.com/ru/companies/avito/articles/979836/

#ru

@big_data_analysis | Другие наши каналы
1👍1
Внутренняя БД FineBI и аналитика BI-системы

Привет, Хабр!  Меня зовут Юлианна Валиуллина и я главный эксперт по развитию BI в банке Уралсиб.

Для начала немного о нас: мы практикуем self-service подход, в банке более 200 разработчиков, из них 150 имеют опубликованные дашборды, остальные делают аналитику для себя. Более 1200 опубликованных дашбордов, MAU около 1500. Большая часть дашбордов в нашем банке работает в spider(extract) режиме, доля direct 15-20%.

Такое количество пользователей и разработчиков требует высокого уровня автоматизации для осуществления поддержки и администрирования. В этой статье хочу рассказать о том, как мы строим внутреннюю аналитику BI системы.


Читать: https://habr.com/ru/companies/uralsib/articles/980872/

#ru

@big_data_analysis | Другие наши каналы
Больше, чем BI: 23 фичи Luxms BI, которыми мы гордимся. Часть 4: фичи, которых нет в других BI-системах

Это заключительная часть серии «23 фичи Luxms BI, которыми мы гордимся». В первой мы говорили о платформенности и архитектуре, о фундаменте системы. Во второй – о классическом BI-функционале. В третьей – о возможностях, выходящих за рамки привычной бизнес-аналитики.

А сегодня расскажем о том, что принципиально отличает Luxms BI от аналогов, о фичах, которых нет в других BI-системах. Эти особенности – прямое следствие нашей экспертизы и особенных подходов к архитектуре, и они часто становятся решающим аргументом для тех, кто выбирает платформу для серьезных, долгосрочных проектов.


Читать: https://habr.com/ru/companies/luxms_bi/articles/980886/

#ru

@big_data_analysis | Другие наши каналы
Trino в Авито два года спустя: от движка к полноценной экосистеме

Всем привет! Меня зовут Дмитрий Рейман, я техлид аналитической платформы Avito. Уже третий год мы занимаемся миграцией с Vertica на Trino. Изначально казалось, что это будет просто: перенесём запросы, перепишем коннекторы, чуть подправим пайплайны.

Но за два с лишним года миграция перестала быть просто миграцией: проект разросся в инженерную одиссею, и вокруг Trino мы начали строить целую экосистему. Как это было — рассказываю под катом.


Читать: https://habr.com/ru/companies/avito/articles/979912/

#ru

@big_data_analysis | Другие наши каналы
ML-аналитика, какие проблемы решает, инструменты, зачем выделять ресурсы

Привет, Хабр! Меня зовут Игорь Миленький, я руководитель отдела ML-аналитики в музыкальном сервисе Звук. Расскажу об еще одной профессии в Data Science, ML-аналитике, и покажу на практике, как устроена работа команды в Звуке. В статье хотел бы дать общее представление о профессии ML-аналитика и примерах задач.


Читать: https://habr.com/ru/articles/981270/

#ru

@big_data_analysis | Другие наши каналы
Вы строите Lakehouse, а сторадж строит вам проблемы. Что делать?

Всем привет! Меня зовут Дмитрий Листвин, я занимаюсь аналитическим хранилищем данных в Авито.

В этой статье хочу поделиться нашим опытом построения Lakehouse поверх объектного хранилища — и тем, как реальная аналитическая нагрузка быстро превращает «обычный S3» в самый капризный элемент всей архитектуры. Будет много про извлечение максимума производительности из Ceph: как добиться высокой пропускной способности HDD, когда поверх данных хочется запускать тяжёлые аналитические запросы.


Читать: https://habr.com/ru/companies/avito/articles/980980/

#ru

@big_data_analysis | Другие наши каналы
👍1
Весь год вы носили футболки и джинсы… Хватит!

Заглядывайте к нам в виртуальную примерочную и выбирайте себе идеальный скин для встречи Нового года.

Осторожно, эти наряды могут наповал сразить ваших коллег…

Реклама
Когда рост лидов превращается в деградацию процесса: кейс про перегрев колл-центра

Аномалия: CRM «горит», хотя графики растут

Утро. На белой доске ещё держится вчерашний план смены, а в CRM задачи мигают красным — как гирлянда, только без ощущения праздника. При этом на дашбордах всё выглядит прилично: лидов больше, звонков больше, эфир растёт.

Проблема в том, что «больше» не всегда означает «лучше». В процессах с ограниченным ресурсом (в нашем случае — люди и минуты эфира) рост входа часто масштабирует не результат, а потери: очереди, лишние пересадки, паузы в коммуникации, усталость смены.

Эта статья — про момент, когда мы перестали считать рост лидов победой и начали смотреть на управляемость. Данные простые, выводы — скучные. Но именно скучные решения обычно держат систему.

Контекст: вход процесса — лид, выход — следующий шаг

Мы — Lead IT. Приводим застройщикам лиды по фиксированной цене и работаем по CPA. Плюс держим свой колл‑центр..

Чтобы не путаться, зафиксируем термины как процесс.


Читать: https://habr.com/ru/articles/981598/

#ru

@big_data_analysis | Другие наши каналы
Ускоряем загрузку данных в BI в 2 раза: кейс команды VK

Apache Superset — востребованное open-source решение для анализа данных, которое можно быстро установить и встроить в существующий технологический стек компании, благодаря большому количеству коннекторов и видов визуализаций. Однако для высоконагруженных систем и сложных сценариев некоторые компании дорабатывают исходную версию — например, внедряют инструменты автоматического кеширования и оптимизируют архитектуру хранения данных для построения графиков. По этому пути в своё время пошли и мы в VK.

Привет, Хабр. Меня зовут Никита Романов. Я руководитель команды разработки аналитических инструментов в VK. В этой статье расскажу о нашем опыте оптимизации Apache Superset под свои задачи.


Читать: https://habr.com/ru/companies/vk/articles/981820/

#ru

@big_data_analysis | Другие наши каналы
Архитектура АИС «Налог-3»: или как работает ФНС на самом деле

Вокруг ФНС в последнее время крутится слишком много мифов. Последний из них — история про новогодний стол, икру и якобы контроль налоговой через фотографии в соцсетях.

Этот инфоповод и стал причиной написать статью. Не для того, чтобы обсуждать конкретную «страшилку», а чтобы показать как на самом деле устроен налоговый контроль: что ФНС реально проверяет, на какие данные опирается и почему большинство популярных представлений не имеет отношения к практике.

Я опираюсь не на слухи и пересказы, а на реальный опыт работы с налоговыми проверками и понимание внутренних механизмов ФНС. За плечами — 12 лет работы в налоговой системе в разных направлениях: предпроверочный анализ, камеральные проверки, выездные проверки и курирование отраслевых направлений внутри региона.


Читать: https://habr.com/ru/articles/981988/

#ru

@big_data_analysis | Другие наши каналы
ИИтоги 2025 года

Весь год я ежедневно следил за новостями в области искусственного интеллекта. И очень устал. Имена новых моделей, бьющих очередные бенчмарки, превращаются в шум, а мозг уже не реагирует на очередные срочные (!) сообщения инфлюэнсеров о БЕЗУМНОМ прорыве. На деле такое количество информации избыточно, если только вам профессионально не нужно следить за какой-либо областью. Но охота видеть развитие технологий широкими мазками, чтобы понимать изменения на горизонте месяцев и лет. Не найдя такой высокоуровневой подборки, которая бы меня устроила, я решил написать её сам. В этой статье вы найдёте описание развития ИИ за год. Что изменилось в технологиях за 2026 год? Какие компании и стартапы сейчас на слуху? Как ИИ влияет на экономику и регуляции? Помогает ли ИИ двигать науку и медицину? Ответы (с мемами!) смотрите в статье


Читать: https://habr.com/ru/articles/982056/

#ru

@big_data_analysis | Другие наши каналы
Как я вкатывался в Clickhouse

Я блокчейн разработчик, и в проекте у нас базы на сотни гигабайт с децентрализованных бирж. Чтобы строить аналитические отчеты и делать агрегации, такие как вычисления цен, биржевых свечей, объемов торгов, цен на токены, мы используем БД Clickhouse. До этого я работал только с Postgres (и давно с MSSQL), и хочу рассказать, как я вкатывался, что удивило – практический опыт и WTFы. Прочитав эту статью вам, возможно, захочется сделать аналитику по своим данным в Clickhouse – возможно, ищете, что полезного освоить на длинных выходных. Итак, поехали!


Читать: https://habr.com/ru/articles/982130/

#ru

@big_data_analysis | Другие наши каналы
👍21
CUPED на практике: когда помогает, когда мешает и что проверить перед применением

CUPED часто рекомендуют как простой способ сделать A‑B тесты чувствительнее, но в реальных экспериментах он может как помочь, так и навредить. Причины почти всегда практические: историческая ковариата пересекается по времени с экспериментом, отличается единица анализа, есть пропуски или выбросы настолько велики и значительны, что оценка коэффициента становится неустойчивой.

В этом разборе я покажу CUPED на примерах, близких к продовым метрикам вроде выручки на пользователя. Мы посмотрим, почему стандартный анализ плохо работает при выбросах, как меняется ширина доверительных интервалов при добавлении CUPED, и что происходит с мощностью и ошибкой первого рода. Отдельный акцент — как выбирать исторические данные для ковариаты и как не поймать утечку воздействия в предэкспериментальный период. В конце практический набор проверок, чтобы CUPED был полезным инструментом, но не источником искаженных выводов.


Читать: https://habr.com/ru/articles/982280/

#ru

@big_data_analysis | Другие наши каналы
👍1
АИС «Налог-3»: почему это одна из самых мощных государственных IT-систем России

За последнее десятилетие Федеральная налоговая служба (ФНС) совершила фундаментальный переход от традиционной модели администрирования к подходу, основанному на анализе больших баз данных.

Если вы соприкасались с налоговой системой - проходили проверки, бывали на комиссиях в инспекциях, общались с налоговыми органами, то вы слышали про АИС «Налог-3», одну из самых масштабных государственных IT-платформ в России.

Я проработал в системе налоговых органов 12 лет - от рядового инспектора в ИФНС до заместителя начальника отдела проведения налоговых проверок Управления ФНС - и наблюдал эту трансформацию изнутри. В этой статье я хочу показать, насколько эта система действительно мощная, как она эволюционировала, что она реально умеет сегодня и почему, несмотря на весь объём данных, это пока не «искусственный интеллект, который всё делает сам»

Сразу обозначу границу: я не раскрываю никакой служебной информации. Всё, о чём в статье пойдёт речь, это обобщение моего опыта работы в службе и данные, которые размещены в открытом доступе. Из налоговых органов я ушёл относительно недавно (2 месяца назад), и за это время мало, что могло поменяться, поэтому информация все еще остается актуальной.


Читать: https://habr.com/ru/articles/982504/

#ru

@big_data_analysis | Другие наши каналы
👍2🔥1