Create cross-account, custom Amazon Managed Grafana dashboards for Amazon Redshift
Read: https://aws.amazon.com/blogs/big-data/create-cross-account-custom-amazon-managed-grafana-dashboards-for-amazon-redshift/
Read: https://aws.amazon.com/blogs/big-data/create-cross-account-custom-amazon-managed-grafana-dashboards-for-amazon-redshift/
Stream change data to Amazon Kinesis Data Streams with AWS DMS
Read: https://aws.amazon.com/blogs/big-data/stream-change-data-to-amazon-kinesis-data-streams-with-aws-dms/
Read: https://aws.amazon.com/blogs/big-data/stream-change-data-to-amazon-kinesis-data-streams-with-aws-dms/
Accelerate Amazon DynamoDB data access in AWS Glue jobs using the new AWS Glue DynamoDB Export connector
Read: https://aws.amazon.com/blogs/big-data/accelerate-amazon-dynamodb-data-access-in-aws-glue-jobs-using-the-new-aws-glue-dynamodb-elt-connector/
Read: https://aws.amazon.com/blogs/big-data/accelerate-amazon-dynamodb-data-access-in-aws-glue-jobs-using-the-new-aws-glue-dynamodb-elt-connector/
Supply Chain automation или как автоматизировать цепочки поставок
В этой статье речь пойдет о предиктивном определении поставки товарно-материальных ценностей в сеть фронт-офисов банка. Проще говоря, об автоматизированной организации снабжения отделений бумагой, канцтоварами и другими расходными материалами.
Этот процесс называется автопополнение и состоит из следующих этапов – прогнозирование потребности в центре снабжения, формирование заказа там же, согласование и корректировка потребности розничным блоком и непосредственно поставка. Слабое место здесь – необходимость ручной корректировки и последующего согласования объема поставки менеджерами логистики и руководителями подразделений.
Какой этап в этой цепочке можно оптимизировать? Во время формирования заказа менеджеры логистики рассчитывают количество товаров к поставке, основываясь на ретро-данных, данных о срочных заказах и своем экспертном опыте. При этом руководители отделений, чтобы обосновать потребность в тех или иных товарах, должны отслеживать их расход и понимать текущие запасы в отделении. Если мы научимся определять точную потребность в товарах и автоматизируем этот расчет, то этапы формирования и корректировки заказа будут занимать гораздо меньше времени или даже станут вовсе не нужны.
Задача прогнозирования потребления
Есть очень похожая и более распространенная задача в розничной торговле: сколько каких товаров нужно поставить в магазин Х в момент времени У? Задача решается относительно просто: зная потребление товара во времени из чеков и запасы товара на складе, можно вычислить будущую поставку напрямую. Поставить нужно столько, сколько предположительно продадут, за минусом запаса.
Читать: https://habr.com/ru/post/673336/
В этой статье речь пойдет о предиктивном определении поставки товарно-материальных ценностей в сеть фронт-офисов банка. Проще говоря, об автоматизированной организации снабжения отделений бумагой, канцтоварами и другими расходными материалами.
Этот процесс называется автопополнение и состоит из следующих этапов – прогнозирование потребности в центре снабжения, формирование заказа там же, согласование и корректировка потребности розничным блоком и непосредственно поставка. Слабое место здесь – необходимость ручной корректировки и последующего согласования объема поставки менеджерами логистики и руководителями подразделений.
Какой этап в этой цепочке можно оптимизировать? Во время формирования заказа менеджеры логистики рассчитывают количество товаров к поставке, основываясь на ретро-данных, данных о срочных заказах и своем экспертном опыте. При этом руководители отделений, чтобы обосновать потребность в тех или иных товарах, должны отслеживать их расход и понимать текущие запасы в отделении. Если мы научимся определять точную потребность в товарах и автоматизируем этот расчет, то этапы формирования и корректировки заказа будут занимать гораздо меньше времени или даже станут вовсе не нужны.
Задача прогнозирования потребления
Есть очень похожая и более распространенная задача в розничной торговле: сколько каких товаров нужно поставить в магазин Х в момент времени У? Задача решается относительно просто: зная потребление товара во времени из чеков и запасы товара на складе, можно вычислить будущую поставку напрямую. Поставить нужно столько, сколько предположительно продадут, за минусом запаса.
Читать: https://habr.com/ru/post/673336/
👍2
Configure an automated email sync for federated SSO users to access Amazon QuickSight
Read: https://aws.amazon.com/blogs/big-data/configure-an-automated-email-sync-for-federated-sso-users-to-access-amazon-quicksight/
Read: https://aws.amazon.com/blogs/big-data/configure-an-automated-email-sync-for-federated-sso-users-to-access-amazon-quicksight/
Loginom+BI2BUSINESS+Visiology: технологическое партнерство — путь российского BI?
Сегодня у нас есть отличный повод снова вернуться к вопросу развития российского BI. Совместное решение от Loginom и BI2BUSINESS, по заявлениям его создателей, позволяет упростить внедрение BI на базе платформы Visiology для целого ряда часто встречающихся задач. Подробности о новой интеграции специалисты обещают раскрыть в ходе вебинара, а несколько мыслей о важности этого события вы найдете под катом.
Узнать больше
Читать: https://habr.com/ru/post/661795/
Сегодня у нас есть отличный повод снова вернуться к вопросу развития российского BI. Совместное решение от Loginom и BI2BUSINESS, по заявлениям его создателей, позволяет упростить внедрение BI на базе платформы Visiology для целого ряда часто встречающихся задач. Подробности о новой интеграции специалисты обещают раскрыть в ходе вебинара, а несколько мыслей о важности этого события вы найдете под катом.
Узнать больше
Читать: https://habr.com/ru/post/661795/
Build a high-performance, ACID compliant, evolving data lake using Apache Iceberg on Amazon EMR
Read: https://aws.amazon.com/blogs/big-data/build-a-high-performance-acid-compliant-evolving-data-lake-using-apache-iceberg-on-amazon-emr/
Read: https://aws.amazon.com/blogs/big-data/build-a-high-performance-acid-compliant-evolving-data-lake-using-apache-iceberg-on-amazon-emr/
Converting Columns to DateTime in Oracle Analytics Cloud
Oracle Analytics Cloud (OAC) offers powerful in-house data profiling capabilities. This blog will be dedicated to converting a column from an attribute field to a DateTime field.
Read: https://blogs.oracle.com/analytics/post/converting-text-columns-to-datetime-in-oac
Oracle Analytics Cloud (OAC) offers powerful in-house data profiling capabilities. This blog will be dedicated to converting a column from an attribute field to a DateTime field.
Read: https://blogs.oracle.com/analytics/post/converting-text-columns-to-datetime-in-oac
Oracle
Converting Columns to DateTime in Oracle Analytics Cloud
Oracle Analytics Cloud (OAC) offers powerful in-house data profiling capabilities. This blog describes how to convert a column from an attribute field to a DateTime field.
Игры для самых больших: песочница данных и её безопасность
Говорят, что большие данные — новая нефть. В этом есть глубокая аналогия: каждый день большим данным находят всё новые и новые применения. Но есть и отличие: из двух бочек нефти можно сделать то же, что и из одной, только в два раза больше. А вот объединив два датасета, порой можно обнаружить удивительные вещи, не содержавшиеся ни в одном из них отдельно.
Однако нельзя просто так взять и отдать свои данные кому попало. То, что может принести пользу, могут использовать и во вред. Данные, которые компании генерируют в процессе своей работы, часто (или вообще всегда) содержат чувствительную информацию о клиентах, финансах и тому подобном. Синергия данных сулит большую выгоду, но как извлечь её без риска?
Именно эту проблему решает песочница данных, созданная Ассоциацией больших данных. В ней большие игроки могут обмениваться своими игрушками, не опасаясь, что их отберут хулиганы. Почему они могут не опасаться — читайте под катом.
Читать: https://habr.com/ru/post/673864/
Говорят, что большие данные — новая нефть. В этом есть глубокая аналогия: каждый день большим данным находят всё новые и новые применения. Но есть и отличие: из двух бочек нефти можно сделать то же, что и из одной, только в два раза больше. А вот объединив два датасета, порой можно обнаружить удивительные вещи, не содержавшиеся ни в одном из них отдельно.
Однако нельзя просто так взять и отдать свои данные кому попало. То, что может принести пользу, могут использовать и во вред. Данные, которые компании генерируют в процессе своей работы, часто (или вообще всегда) содержат чувствительную информацию о клиентах, финансах и тому подобном. Синергия данных сулит большую выгоду, но как извлечь её без риска?
Именно эту проблему решает песочница данных, созданная Ассоциацией больших данных. В ней большие игроки могут обмениваться своими игрушками, не опасаясь, что их отберут хулиганы. Почему они могут не опасаться — читайте под катом.
Читать: https://habr.com/ru/post/673864/
Disaster recovery considerations with Amazon EMR on Amazon EC2 for Spark workloads
Read: https://aws.amazon.com/blogs/big-data/disaster-recovery-considerations-with-amazon-emr-on-amazon-ec2-for-spark-workloads/
Read: https://aws.amazon.com/blogs/big-data/disaster-recovery-considerations-with-amazon-emr-on-amazon-ec2-for-spark-workloads/
Migrate from Snowflake to Amazon Redshift using AWS Glue Python shell
Read: https://aws.amazon.com/blogs/big-data/migrate-from-snowflake-to-amazon-redshift-using-aws-glue-python-shell/
Read: https://aws.amazon.com/blogs/big-data/migrate-from-snowflake-to-amazon-redshift-using-aws-glue-python-shell/
Что я узнал на конференции DataOps Unleashed 2022
DataOps Unleashed — конференция, на которой обсуждают DataOps, CloudOps и AIOps, лекторы рассказывают об актуальных тенденциях и передовых методах запуска, управления и мониторинга пайплайнов данных и аналитических рабочих нагрузках.
Команда VK Cloud Solutions перевела конспект выступлений, которые показались полезны автору статьи. DataOps-специалисты ведущих ИТ-компаний объясняли, как они устанавливают предсказуемость данных, повышают достоверность и снижают расходы на работу с пайплайнами.
Читать: https://habr.com/ru/post/673320/
DataOps Unleashed — конференция, на которой обсуждают DataOps, CloudOps и AIOps, лекторы рассказывают об актуальных тенденциях и передовых методах запуска, управления и мониторинга пайплайнов данных и аналитических рабочих нагрузках.
Команда VK Cloud Solutions перевела конспект выступлений, которые показались полезны автору статьи. DataOps-специалисты ведущих ИТ-компаний объясняли, как они устанавливают предсказуемость данных, повышают достоверность и снижают расходы на работу с пайплайнами.
Читать: https://habr.com/ru/post/673320/
Как собрать отчет в Yandex DataLens быстро и почти просто
Google Data Studio это, конечно, хорошо, но у нас есть свой чудесный аналог - похожий инструмент от одной из передовых ИТ-компаний РФ Yandex Datalens. Сегодня в паре абзацев попробуем быстро собрать отчет, аналогичный материалу про Data Studio. Спойлер: это не так просто, как кажется на первый взгляд. Но давайте разбираться.
Читать: https://habr.com/ru/post/674038/
Google Data Studio это, конечно, хорошо, но у нас есть свой чудесный аналог - похожий инструмент от одной из передовых ИТ-компаний РФ Yandex Datalens. Сегодня в паре абзацев попробуем быстро собрать отчет, аналогичный материалу про Data Studio. Спойлер: это не так просто, как кажется на первый взгляд. Но давайте разбираться.
Читать: https://habr.com/ru/post/674038/
Know your data 34: coming for your most private data
Read: https://junkcharts.typepad.com/numbersruleyourworld/2022/06/know-your-data-34-coming-for-your-most-private-data.html
Read: https://junkcharts.typepad.com/numbersruleyourworld/2022/06/know-your-data-34-coming-for-your-most-private-data.html
Configuring Customized Security in Oracle Fusion Analytics Warehouse
Security administrators should read this short post and attached guide to understand how to configure custom security in Fusion Analytics.
Read: https://blogs.oracle.com/analytics/post/configuring-customized-security-in-oracle-fusion-analytics-warehouse
Security administrators should read this short post and attached guide to understand how to configure custom security in Fusion Analytics.
Read: https://blogs.oracle.com/analytics/post/configuring-customized-security-in-oracle-fusion-analytics-warehouse
Oracle
Configuring Customized Security in Oracle Fusion Analytics Warehouse
Security administrators should read this short post and attached guide to understand how to configure custom security in Fusion Analytics.
«Скоро приедем?»: как оценить время в пути
В этом году мы много работали над качеством предсказания времени в пути (ETA) в навигаторе 2ГИС и на 30% увеличили количество маршрутов, у которых прогнозное время совпадает с реальным с точностью до минуты. Меня зовут Кирилл Кальмуцкий, я Data Scientist в 2ГИС, и я расскажу, как максимально точно рассчитывать время прибытия из точки А в точку Б в условиях постоянного изменения дорожной ситуации.
Поговорим про то, как мы постепенно меняли подходы к оценке времени в пути: от простой аддитивной модели до использования ML-моделей прогноза пробок и корректировки ETA. Ввели Traversal Time на смену GPS-скоростей, а ещё проводили эксперименты и оценивали качество изменений алгоритма, чистили мусор из данных и закатывали модели в продакшн. Обо всём по порядку.
Читать: https://habr.com/ru/post/674230/
В этом году мы много работали над качеством предсказания времени в пути (ETA) в навигаторе 2ГИС и на 30% увеличили количество маршрутов, у которых прогнозное время совпадает с реальным с точностью до минуты. Меня зовут Кирилл Кальмуцкий, я Data Scientist в 2ГИС, и я расскажу, как максимально точно рассчитывать время прибытия из точки А в точку Б в условиях постоянного изменения дорожной ситуации.
Поговорим про то, как мы постепенно меняли подходы к оценке времени в пути: от простой аддитивной модели до использования ML-моделей прогноза пробок и корректировки ETA. Ввели Traversal Time на смену GPS-скоростей, а ещё проводили эксперименты и оценивали качество изменений алгоритма, чистили мусор из данных и закатывали модели в продакшн. Обо всём по порядку.
Читать: https://habr.com/ru/post/674230/
Как нейронка обогнала бустинг, а команда Сбера заняла 1 место в конкурсе Data Fusion Contest 2022
Привет, Хабр! Буквально недавно стали известны итоги открытого соревнования по машинному обучению Data Fusion Contest 2022. Это уже второе соревнование, причём более масштабное, чем первое. В конкурсе с общим призовым фондом 2 млн рублей приняли участие более тысячи человек. Участники соревновались не один и не два дня, битва умов продолжалась целых 3,5 месяца. За это время организаторы получили 6,5 тыс. решений.
Что нужно было делать участникам? Если кратко, то главная задача была такой: при помощи машинного обучения решить проблему сопоставления из двух совершенно разных массивов данных. Требовалось сопоставить данные клиентов из датасета с транзакциями клиентов ВТБ по банковским картам и данные кликстрима (информация о посещении web-страниц) клиентов Ростелекома. Нужно было установить соответствие между клиентами двух организаций. Оно устанавливалось, если два клиента из датасетов – один и тот же человек. Конечно же, данные были деперсонализированы, сохранялась лишь весьма ограниченная информация о самом поведении пользователей. Сопоставлять всё это обучали искусственный интеллект. Подробности – под катом. А ещё там будет ссылка на исходники крутой библиотеки для ИИ, которую использовали победители конкурса. Поехали!
Читать: https://habr.com/ru/post/674272/
Привет, Хабр! Буквально недавно стали известны итоги открытого соревнования по машинному обучению Data Fusion Contest 2022. Это уже второе соревнование, причём более масштабное, чем первое. В конкурсе с общим призовым фондом 2 млн рублей приняли участие более тысячи человек. Участники соревновались не один и не два дня, битва умов продолжалась целых 3,5 месяца. За это время организаторы получили 6,5 тыс. решений.
Что нужно было делать участникам? Если кратко, то главная задача была такой: при помощи машинного обучения решить проблему сопоставления из двух совершенно разных массивов данных. Требовалось сопоставить данные клиентов из датасета с транзакциями клиентов ВТБ по банковским картам и данные кликстрима (информация о посещении web-страниц) клиентов Ростелекома. Нужно было установить соответствие между клиентами двух организаций. Оно устанавливалось, если два клиента из датасетов – один и тот же человек. Конечно же, данные были деперсонализированы, сохранялась лишь весьма ограниченная информация о самом поведении пользователей. Сопоставлять всё это обучали искусственный интеллект. Подробности – под катом. А ещё там будет ссылка на исходники крутой библиотеки для ИИ, которую использовали победители конкурса. Поехали!
Читать: https://habr.com/ru/post/674272/
❤2
Tableau vs FineBI. Часть II: разработка
В прошлом посте мы сравнили основные параметры FineBI и Tableau, а сейчас сконцентрируемся непосредственно на разработке. Подчеркнем: мы не претендуем на очень глубокий анализ функционала – речь, скорее, про обзор возможностей. Ведь все мы знаем, что все фломастеры на вкус разные: у каждого, кто работает в BI-системе, свои пристрастия и потребности. Но есть определенный набор основных задач, которые должна решать платформа – иначе грош ей цена. Итак, поехали!
Создание визуализаций (Tableau vs FineBI: 5/4)
В этом отношении особых различий нет: обе системы справляются с адаптивной разработкой. Однако признаем: в Tableau больше инструментов работы с визуализациями, их кастомизации.
Tableau:
- Доступно 24 вида графика.
- Богатые возможности кастомизации.
- Базируется на концепции drag-and-drop.
Читать: https://habr.com/ru/post/674326/
В прошлом посте мы сравнили основные параметры FineBI и Tableau, а сейчас сконцентрируемся непосредственно на разработке. Подчеркнем: мы не претендуем на очень глубокий анализ функционала – речь, скорее, про обзор возможностей. Ведь все мы знаем, что все фломастеры на вкус разные: у каждого, кто работает в BI-системе, свои пристрастия и потребности. Но есть определенный набор основных задач, которые должна решать платформа – иначе грош ей цена. Итак, поехали!
Создание визуализаций (Tableau vs FineBI: 5/4)
В этом отношении особых различий нет: обе системы справляются с адаптивной разработкой. Однако признаем: в Tableau больше инструментов работы с визуализациями, их кастомизации.
Tableau:
- Доступно 24 вида графика.
- Богатые возможности кастомизации.
- Базируется на концепции drag-and-drop.
Читать: https://habr.com/ru/post/674326/
[recovery mode] Как системы мониторинга и прогноза встраиваются в бизнес-процессы ТОиР: сценарии на примере F5 PMM и F5 EAM
Привет, Хабр! Мы – Factory5, российский разработчик ПО для промышленных предприятий. Создаём решения для управления производственными активами и интеллектуального анализа больших данных на базе технологий машинного обучения. Сегодня расскажем о том, как наши системы встраиваются в бизнес-процессы и помогают оптимизировать ресурсы.
Техническое обслуживание и ремонт могут занимать до 50% операционных затрат предприятия. Сегодня существует много умных решений для автоматизации, улучшения качества и снижения стоимости ТОиР. Одно из таких — системы мониторинга и прогноза, которые собирают данные об оборудовании, анализируют их и прогнозируют время до возможного отказа.
Читать: https://habr.com/ru/post/674410/
Привет, Хабр! Мы – Factory5, российский разработчик ПО для промышленных предприятий. Создаём решения для управления производственными активами и интеллектуального анализа больших данных на базе технологий машинного обучения. Сегодня расскажем о том, как наши системы встраиваются в бизнес-процессы и помогают оптимизировать ресурсы.
Техническое обслуживание и ремонт могут занимать до 50% операционных затрат предприятия. Сегодня существует много умных решений для автоматизации, улучшения качества и снижения стоимости ТОиР. Одно из таких — системы мониторинга и прогноза, которые собирают данные об оборудовании, анализируют их и прогнозируют время до возможного отказа.
Читать: https://habr.com/ru/post/674410/
The Data Founder Story: TUKAN
Read: https://www.dataengineeringweekly.com/p/the-data-founder-story-tukan
Read: https://www.dataengineeringweekly.com/p/the-data-founder-story-tukan