Telegram опубликовал в открытом доступе тестовую версию своего блокчейна — TON. Ссылки на архивы с файлами и хранилище на Github размещены на тестовом сайте ton.org.
Подробнее:
https://tjournal.ru/115571
https://tonlabs.io/main
Подробнее:
https://tjournal.ru/115571
https://tonlabs.io/main
TJ
«Ведомости» рассказали о старте открытого тестирования блокчейна TON. Но связь сайта с Telegram не подтверждена
Платформу может загрузить любой желающий.
We present a method to produce abstractive summaries of long documents that exceed several thousand words via neural abstractive summarization. We perform a simple extractive step before generating a summary, which is then used to condition the transformer language model on relevant information before being tasked with generating a summary.
We show that this extractive step significantly improves summarization results. We also show that this approach produces more abstractive summaries compared to prior work that employs a copy mechanism while still achieving higher rouge scores. Note: The abstract above was not written by the authors, it was generated by one of the models presented in this paper
https://arxiv.org/abs/1909.03186
We show that this extractive step significantly improves summarization results. We also show that this approach produces more abstractive summaries compared to prior work that employs a copy mechanism while still achieving higher rouge scores. Note: The abstract above was not written by the authors, it was generated by one of the models presented in this paper
https://arxiv.org/abs/1909.03186
arXiv.org
On Extractive and Abstractive Neural Document Summarization with...
We present a method to produce abstractive summaries of long documents that exceed several thousand words via neural abstractive summarization. We perform a simple extractive step before...
"We know from Facebook’s own research that passive experiences leave people feeling worse. It’s when people interact with each other — when they actively participate in the digital forum — that they report higher levels of well being."
https://newsroom.fb.com/news/2017/12/hard-questions-is-spending-time-on-social-media-bad-for-us/
Other "hard questions" https://newsroom.fb.com/news/category/hard-questions/
https://newsroom.fb.com/news/2017/12/hard-questions-is-spending-time-on-social-media-bad-for-us/
Other "hard questions" https://newsroom.fb.com/news/category/hard-questions/
Эффект Рингельмана -- эффект социальной лени
https://en.wikipedia.org/wiki/Ringelmann_effect
https://en.wikipedia.org/wiki/Social_loafing
Есть формула, которая апроксимирует средний вклад каждого участника. Работает на группе до 7 человек и только для физической активности. Есть вариант и для бОльших групп, и для knowledge workers (надо копать отдельно):
где С — средний индивидуальный вклад участников; К — количество участников группы.
Можно подумать, как с этой помощью моделировать эффективность команд/соц.групп.
Книжка по теме
https://www.amazon.com/Group-Dynamics-5th-Donelson-Forsyth-ebook/dp/B01AJ8YU2Q
Дискуссия со ссылками и спорами
https://www.facebook.com/teodorix/posts/10220400256226704
https://en.wikipedia.org/wiki/Ringelmann_effect
https://en.wikipedia.org/wiki/Social_loafing
Есть формула, которая апроксимирует средний вклад каждого участника. Работает на группе до 7 человек и только для физической активности. Есть вариант и для бОльших групп, и для knowledge workers (надо копать отдельно):
С = 100 - 7*(К-1)где С — средний индивидуальный вклад участников; К — количество участников группы.
Можно подумать, как с этой помощью моделировать эффективность команд/соц.групп.
Книжка по теме
https://www.amazon.com/Group-Dynamics-5th-Donelson-Forsyth-ebook/dp/B01AJ8YU2Q
Дискуссия со ссылками и спорами
https://www.facebook.com/teodorix/posts/10220400256226704
paper168.pdf
1.8 MB
Apple's CHI 2019 research paper on app usage in older adults
To characterize smartphone usage among older adults, we collected iPhone usage data from 84 healthy older adults over three months. We find that older adults use fewer apps, take longer to complete tasks, and send fewer messages. We use cognitive test results from these same older adults to then show that up to 79% of these differences can be explained by cognitive decline, and that we can predict cognitive test performance from smartphone usage with 83% ROCAUC. While older adults differ from younger adults in app usage behavior, the “cognitively young” older adults use smartphones much like their younger counterparts. Our study suggests that to better support all older adults, researchers and developers should consider the full spectrum of cognitive function.
To characterize smartphone usage among older adults, we collected iPhone usage data from 84 healthy older adults over three months. We find that older adults use fewer apps, take longer to complete tasks, and send fewer messages. We use cognitive test results from these same older adults to then show that up to 79% of these differences can be explained by cognitive decline, and that we can predict cognitive test performance from smartphone usage with 83% ROCAUC. While older adults differ from younger adults in app usage behavior, the “cognitively young” older adults use smartphones much like their younger counterparts. Our study suggests that to better support all older adults, researchers and developers should consider the full spectrum of cognitive function.
hamilton2017loyalty.pdf
760.1 KB
In this paper we operationalize loyalty as a user-community relation: users loyal to a community consistently prefer it over all others; loyal communities retain their loyal users over time. By exploring a large set of Reddit communities, we reveal that loyalty is manifested in remarkably consistent behaviors. Loyal users employ language that signals collective identity and engage with more esoteric, less popular content, indicating that they may play a curational role in surfacing new material. Loyal communities have denser user-user interaction networks and lower rates of triadic closure, suggesting that community-level loyalty is associated with more cohesive interactions and less fragmentation into subgroups. We exploit these general patterns to predict future rates of loyalty. Our results show that a user’s propensity to become loyal is apparent from their initial interactions with a community, suggesting that some users are intrinsically loyal from the very beginning.
User modeling is the subdivision of human–computer interaction which describes the process of building up and modifying a conceptual understanding of the user. The main goal of user modeling is customization and adaptation of systems to the user's specific needs. The system needs to "say the 'right' thing at the 'right' time in the 'right' way". To do so it needs an internal representation of the user. Another common purpose is modeling specific kinds of users, including modeling of their skills and declarative knowledge, for use in automatic software-tests. User-models can thus serve as a cheaper alternative to user testing.
Conference: https://www.um.org/
Conference: https://www.um.org/
www.um.org
User Modeling - User Modeling
UM Inc. is a society of researchers and practitioners who are interested in developing adaptive systems and personalizing users’ experience with systems.
Inferring User Interests in Microblogging Social Networks: A Survey
Guangyuan Piao, John G. Breslin
https://arxiv.org/abs/1712.07691
Guangyuan Piao, John G. Breslin
https://arxiv.org/abs/1712.07691
arXiv.org
Inferring User Interests in Microblogging Social Networks: A Survey
With the growing popularity of microblogging services such as Twitter in
recent years, an increasing number of users are using these services in their
daily lives. The huge volume of information...
recent years, an increasing number of users are using these services in their
daily lives. The huge volume of information...
A bunch of smaller things joining together to form a giant that can function as more than the sum of its parts — is called emergence. We can visualize it as a tower.
...
A human isn’t simply a perfect survival creature—it’s also just the right element of a perfect survival tribe. Examining the traits of a perfect survival tribe can help us see the specs for human nature, not only illuminating who we are, but why we’re that way.
https://waitbutwhy.com/2019/08/giants.html
...
A human isn’t simply a perfect survival creature—it’s also just the right element of a perfect survival tribe. Examining the traits of a perfect survival tribe can help us see the specs for human nature, not only illuminating who we are, but why we’re that way.
https://waitbutwhy.com/2019/08/giants.html
Forwarded from TechSparks
Микрософту упрямо не везёт с ботами. Была у них печально знаменитая Таи, которая реально училась у собеседников в Твиттере — и ее немедленно обучили плохому и очень плохому.
А теперь тамошние исследователи написали бота-комментатора (да ещё и выложили код на Гитхабе). Бот читает новости и пишет типичный комментарий среднего обитателя соцсеточек, который в каждой бочке затычка. Цель заявлена благая: размещая сгенерированные комментарии, побудить живых людей вступать в дискуссию (а для этого некоторые из них и саму новость прочтут). То есть боты должны поднять интерес к новостям и вовлечённость читателей.
Но неудивительно, что борцы с фейками увидели не столь благостные сценарии использования алгоритма ;) И встревожились. А ещё неудивительно, что обе разработки — изначально для Китая: всё-таки деанонимизированный и контролируемый интернет живет по своим правилам ;)
https://www.vice.com/en_ca/article/d3a4mk/microsoft-used-machine-learning-to-make-a-bot-that-comments-on-news-articles-for-some-reason
А теперь тамошние исследователи написали бота-комментатора (да ещё и выложили код на Гитхабе). Бот читает новости и пишет типичный комментарий среднего обитателя соцсеточек, который в каждой бочке затычка. Цель заявлена благая: размещая сгенерированные комментарии, побудить живых людей вступать в дискуссию (а для этого некоторые из них и саму новость прочтут). То есть боты должны поднять интерес к новостям и вовлечённость читателей.
Но неудивительно, что борцы с фейками увидели не столь благостные сценарии использования алгоритма ;) И встревожились. А ещё неудивительно, что обе разработки — изначально для Китая: всё-таки деанонимизированный и контролируемый интернет живет по своим правилам ;)
https://www.vice.com/en_ca/article/d3a4mk/microsoft-used-machine-learning-to-make-a-bot-that-comments-on-news-articles-for-some-reason
Vice
Microsoft Used Machine Learning to Make a Bot That Comments on News Articles For Some Reason
The algorithm automatically reads and digests new articles, and posts comments alongside humans.
About UMUAI - The Journal of Personalization Research
User Modeling and User-Adapted Interaction (UMUAI) provides an interdisciplinary forum for the dissemination of novel original research results about interactive computer systems that can be adapted or adapt themselves to their current users, and on the role of user models in the adaptation process.
http://www.umuai.org/
User Modeling and User-Adapted Interaction (UMUAI) provides an interdisciplinary forum for the dissemination of novel original research results about interactive computer systems that can be adapted or adapt themselves to their current users, and on the role of user models in the adaptation process.
http://www.umuai.org/
https://youtu.be/5J5L1uCtX_Q
https://en.wikipedia.org/wiki/Public_participation_geographic_information_system
https://www.qullab.com/research
https://imprecity.ru/analytics
https://en.wikipedia.org/wiki/Public_participation_geographic_information_system
https://www.qullab.com/research
https://imprecity.ru/analytics
YouTube
Эмоции города: анализ качества городской среды с помощью PPGIS – Александра Ненько
В выступлении будут представлены результаты анализа эмоций горожан Санкт-Петербурга, полученных с помощью системы Imprecity, позволяющей зарегистрированным пользователям оставлять смайлики и комментарии об общественных пространствах. На основе собранных…