Эти данные используются и в рекомендациях вакансий, за счёт чего откликов на них из рекомендаций становится совсем немного больше – и они при этом становятся намного более релевантными.
Это что касается этой недели. А на прошлой и позапрошлой у нас был перерыв в продуктовых запусках. Дело не в моём отпуске, а в том, что мы оптимизировали и перезапустили саму систему экспериментов. В поиске мы почти ничего не запускаем без экспериментов, которые показывают, становится ли пользователям лучше. Стандартная продолжительность экспериментов – 2 недели. Система контролируемых экспериментов состоит из системы TDI- и A/B-тестов, а также экспериментальных экземпляров рекомендательных и поисковых систем, которые выдают результаты пользователям, для которых включен эксперимент.
Работа систем на ML связана с постоянным расчётом признаков, при каждом изменении данных о резюме, вакансии, действии пользователя, изменении его местоположения. Многие эксперименты связаны с тем, что мы добавляем или изменяем признаки и метапризнаки. Действий пользователя становится всё больше, а метапризнаки, особенно нейросетевые – всё более ресурсоёмкими, экспериментов – тоже всё больше, например, за Q2 в поиске проверили 67 продуктовых гипотез, в среднем по 3 эксперимента на каждую. Но чтобы быстрее повышать качество выдач и расти, нужно ещё больше экспериментов, и по количеству, и по ресурсоёмкости.
Раньше мы могли себе позволить, для упрощения системы, пересчитывать для каждого экспериментального экземпляра системы и те признаки, которые в нём изменились, и те, которые не изменились, по сравнению с другими экземплярами, экспериментальными и production. Но в последнее время это стало для нас узким местом, ограничивающим количество экспериментов, особенно со сложными (нейросети) и быстрыми (поведение, гео) признаками. Теперь мы сделали, чтобы каждый признак считался только один раз. В результате, сэкономили примерно 40% ресурсоёмкости подсистем, считающих признаки, и сможем улучшать систему быстрее, ну или хотя бы с той же скоростью. В запусках сделали 2-недельный перерыв, но это, даже если брать только последние 3 запуска, того стоило. Пользуйтесь на здоровье!
Ссылка на классическую статью про трансформеры и картинка, пожалуй, самой большой проблемы с ними в production – для привлечения внимания. https://jalammar.github.io/illustrated-transformer/
Это что касается этой недели. А на прошлой и позапрошлой у нас был перерыв в продуктовых запусках. Дело не в моём отпуске, а в том, что мы оптимизировали и перезапустили саму систему экспериментов. В поиске мы почти ничего не запускаем без экспериментов, которые показывают, становится ли пользователям лучше. Стандартная продолжительность экспериментов – 2 недели. Система контролируемых экспериментов состоит из системы TDI- и A/B-тестов, а также экспериментальных экземпляров рекомендательных и поисковых систем, которые выдают результаты пользователям, для которых включен эксперимент.
Работа систем на ML связана с постоянным расчётом признаков, при каждом изменении данных о резюме, вакансии, действии пользователя, изменении его местоположения. Многие эксперименты связаны с тем, что мы добавляем или изменяем признаки и метапризнаки. Действий пользователя становится всё больше, а метапризнаки, особенно нейросетевые – всё более ресурсоёмкими, экспериментов – тоже всё больше, например, за Q2 в поиске проверили 67 продуктовых гипотез, в среднем по 3 эксперимента на каждую. Но чтобы быстрее повышать качество выдач и расти, нужно ещё больше экспериментов, и по количеству, и по ресурсоёмкости.
Раньше мы могли себе позволить, для упрощения системы, пересчитывать для каждого экспериментального экземпляра системы и те признаки, которые в нём изменились, и те, которые не изменились, по сравнению с другими экземплярами, экспериментальными и production. Но в последнее время это стало для нас узким местом, ограничивающим количество экспериментов, особенно со сложными (нейросети) и быстрыми (поведение, гео) признаками. Теперь мы сделали, чтобы каждый признак считался только один раз. В результате, сэкономили примерно 40% ресурсоёмкости подсистем, считающих признаки, и сможем улучшать систему быстрее, ну или хотя бы с той же скоростью. В запусках сделали 2-недельный перерыв, но это, даже если брать только последние 3 запуска, того стоило. Пользуйтесь на здоровье!
Ссылка на классическую статью про трансформеры и картинка, пожалуй, самой большой проблемы с ними в production – для привлечения внимания. https://jalammar.github.io/illustrated-transformer/
jalammar.github.io
The Illustrated Transformer
Discussions:
Hacker News (65 points, 4 comments), Reddit r/MachineLearning (29 points, 3 comments)
Translations: Arabic, Chinese (Simplified) 1, Chinese (Simplified) 2, French 1, French 2, Italian, Japanese, Korean, Persian, Russian, Spanish 1, Spanish…
Hacker News (65 points, 4 comments), Reddit r/MachineLearning (29 points, 3 comments)
Translations: Arabic, Chinese (Simplified) 1, Chinese (Simplified) 2, French 1, French 2, Italian, Japanese, Korean, Persian, Russian, Spanish 1, Spanish…
Forwarded from data.csv (Алексей Смагин)
Wall Street Journal выпустили увлекательное видео о том, как работают алгоритмы тиктока.
Они натренировали несколько десятков ботов с разными интересами, чтобы те смотрели определённые видео, и выяснили, что тиктоку хватает от 40 минут до 2 часов, чтобы построить персональную и удивительно точную ленту рекомендаций, основанную на том, что смотрит пользователь.
У алгоритма есть не очень приятная особенность. Тикток будет показывать вам не те видео, которые вам нравятся, а те видео, которые вы будете смотреть.
В некоторых случаях тикток может стать триггером для мрачных состояний — например, одного бота WJS натренировали для того, чтобы смотреть грустные видео, и вскоре его лента на 93% стала лентой депрессивных роликов.
Смотрите исследование:
https://youtu.be/nfczi2cI6Cs
Они натренировали несколько десятков ботов с разными интересами, чтобы те смотрели определённые видео, и выяснили, что тиктоку хватает от 40 минут до 2 часов, чтобы построить персональную и удивительно точную ленту рекомендаций, основанную на том, что смотрит пользователь.
У алгоритма есть не очень приятная особенность. Тикток будет показывать вам не те видео, которые вам нравятся, а те видео, которые вы будете смотреть.
В некоторых случаях тикток может стать триггером для мрачных состояний — например, одного бота WJS натренировали для того, чтобы смотреть грустные видео, и вскоре его лента на 93% стала лентой депрессивных роликов.
Смотрите исследование:
https://youtu.be/nfczi2cI6Cs
Modeling Information Content Using Observable Behavior
https://terpconnect.umd.edu/~oard/pdf/asis01.pdf
https://terpconnect.umd.edu/~oard/pdf/asis01.pdf