Coding & Data Science Resources – Telegram
Coding & Data Science Resources
31K subscribers
334 photos
516 files
340 links
Official Telegram Channel for Free Coding & Data Science Resources

Admin: @love_data
Download Telegram
𝗙𝗥𝗘𝗘 𝗢𝗻𝗹𝗶𝗻𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗘𝗻𝗿𝗼𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟱 😍

Learn Fundamental Skills with Free Online Courses & Earn Certificates

SQL:- https://pdlink.in/4lvR4zF

AWS:- https://pdlink.in/4nriVCH

Cybersecurity:- https://pdlink.in/3T6pg8O

Data Analytics:- https://pdlink.in/43TGwnM

Enroll for FREE & Get Certified 🎓
𝗦𝘁𝗮𝗿𝘁 𝗮 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝗗𝗮𝘁𝗮 𝗼𝗿 𝗧𝗲𝗰𝗵 (𝗙𝗿𝗲𝗲 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗣𝗮𝘁𝗵)😍

Dreaming of a career in data or tech but don’t know where to begin?👨‍💻📌

Don’t worry — this step-by-step FREE learning path will guide you from scratch to job-ready, without spending a rupee! 💻💼

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45HFUDh

Enjoy Learning ✅️
1
What is the difference between data scientist, data engineer, data analyst and business intelligence?

🧑🔬 Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers “Why is this happening?” and “What will happen next?”
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month

🛠️ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse

📊 Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers “What happened?” or “What’s going on right now?”
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region

📈 Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department

🧩 Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers

🎯 In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
2
𝗖𝗜𝗦𝗖𝗢 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

- Data Analytics
- Data Science 
- Python
- Javanoscript
- Cybersecurity
 
𝐋𝐢𝐧𝐤 👇:- 

https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified🎓
1
Useful Python for data science cheat sheets 👇
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗙𝗥𝗘𝗘 𝗥𝗼𝗮𝗱𝗺𝗮𝗽 ,𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 ,𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 & 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗚𝘂𝗶𝗱𝗲😍

Roadmap:- https://pdlink.in/41c1Kei

Certifications:- https://pdlink.in/3Fq7E4p

Projects:- https://pdlink.in/3ZkXetO

Interview Q/A :- https://pdlink.in/4jLOJ2a

Enroll For FREE & Become a Certified Data Analyst In 2025🎓
Hi Guys,

Here are some of the telegram channels which may help you in data analytics journey 👇👇

SQL: https://news.1rj.ru/str/sqlanalyst

Power BI & Tableau:
https://news.1rj.ru/str/PowerBI_analyst

Excel:
https://news.1rj.ru/str/excel_analyst

Python:
https://news.1rj.ru/str/dsabooks

Jobs:
https://news.1rj.ru/str/datasciencej

Data Science:
https://news.1rj.ru/str/datasciencefree

Artificial intelligence:
https://news.1rj.ru/str/aiindi

Data Analysts:
https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
2
Forwarded from Artificial Intelligence
𝗜𝗻𝗱𝘂𝘀𝘁𝗿𝘆 𝗔𝗽𝗽𝗿𝗼𝘃𝗲𝗱 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 😍

Whether you’re interested in AI, Data Analytics, Cybersecurity, or Cloud Computing, there’s something here for everyone.

100% Free Courses
Govt. Incentives on Completion
Self-paced Learning
Certificates to Showcase on LinkedIn & Resume
Mock Assessments to Test Your Skills

𝐋𝐢𝐧𝐤 👇:- 

https://pdlink.in/447coEk

Enroll for FREE & Get Certified 🎓
Machine Learning – Essential Concepts 🚀

1️⃣ Types of Machine Learning

Supervised Learning – Uses labeled data to train models.

Examples: Linear Regression, Decision Trees, Random Forest, SVM


Unsupervised Learning – Identifies patterns in unlabeled data.

Examples: Clustering (K-Means, DBSCAN), PCA


Reinforcement Learning – Models learn through rewards and penalties.

Examples: Q-Learning, Deep Q Networks



2️⃣ Key Algorithms

Regression – Predicts continuous values (Linear Regression, Ridge, Lasso).

Classification – Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naïve Bayes).

Clustering – Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).

Dimensionality Reduction – Reduces the number of features (PCA, t-SNE, LDA).


3️⃣ Model Training & Evaluation

Train-Test Split – Dividing data into training and testing sets.

Cross-Validation – Splitting data multiple times for better accuracy.

Metrics – Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.


4️⃣ Feature Engineering

Handling missing data (mean imputation, dropna()).

Encoding categorical variables (One-Hot Encoding, Label Encoding).

Feature Scaling (Normalization, Standardization).


5️⃣ Overfitting & Underfitting

Overfitting – Model learns noise, performs well on training but poorly on test data.

Underfitting – Model is too simple and fails to capture patterns.

Solution: Regularization (L1, L2), Hyperparameter Tuning.


6️⃣ Ensemble Learning

Combining multiple models to improve performance.

Bagging (Random Forest)

Boosting (XGBoost, Gradient Boosting, AdaBoost)



7️⃣ Deep Learning Basics

Neural Networks (ANN, CNN, RNN).

Activation Functions (ReLU, Sigmoid, Tanh).

Backpropagation & Gradient Descent.


8️⃣ Model Deployment

Deploy models using Flask, FastAPI, or Streamlit.

Model versioning with MLflow.

Cloud deployment (AWS SageMaker, Google Vertex AI).

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
3
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 & 𝗟𝗲𝗮𝗱𝗶𝗻𝗴 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍

Harward :- https://pdlink.in/4kmYOn1

MIT :- https://pdlink.in/45cvR95

HP :- https://pdlink.in/45ci02k

Google :- https://pdlink.in/3YsujTV

Microsoft :- https://pdlink.in/441GCKF

Standford :- https://pdlink.in/3ThPwNw

IIM :- https://pdlink.in/4nfXDrV

Enroll for FREE & Get Certified 🎓