Coding & Data Science Resources – Telegram
Coding & Data Science Resources
31K subscribers
333 photos
516 files
339 links
Official Telegram Channel for Free Coding & Data Science Resources

Admin: @love_data
Download Telegram
If you are :
    - Depressed
    - Sad
    - Broken hearted
    - Bored in everything

I suggest you follow this Amazing channel on Telegram!.
👇👇🏾
https://news.1rj.ru/str/trueminds
👍1
Data Science Lifecycle
👍2🔥1
📚 Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications
👍2🔥1
Checklist to become a Data Analyst
🔥2
Maths for Machine Learning 👆
👍2🔥1
Prepare for GATE: The Right Time is NOW!

GeeksforGeeks brings you everything you need to crack GATE 2026 – 900+ live hours, 300+ recorded sessions, and expert mentorship to keep you on track.

What’s inside?

Live & recorded classes with India’s top educators
200+ mock tests to track your progress
Study materials - PYQs, workbooks, formula book & more
1:1 mentorship & AI doubt resolution for instant support
Interview prep for IITs & PSUs to help you land opportunities

Learn from Experts Like:

Satish Kumar Yadav – Trained 20K+ students
Dr. Khaleel – Ph.D. in CS, 29+ years of experience
Chandan Jha – Ex-ISRO, AIR 23 in GATE
Vijay Kumar Agarwal – M.Tech (NIT), 13+ years of experience
Sakshi Singhal – IIT Roorkee, AIR 56 CSIR-NET
Shailendra Singh – GATE 99.24 percentile
Devasane Mallesham – IIT Bombay, 13+ years of experience

Use code UPSKILL30 to get an extra 30% OFF (Limited time only)

📌 Enroll for a free counseling session now:
https://gfgcdn.com/tu/UI2/
👍2
For those of you who are new to Data Science and Machine learning algorithms, let me try to give you a brief overview. ML Algorithms can be categorized into three types: supervised learning, unsupervised learning, and reinforcement learning.

1. Supervised Learning:
- Definition: Algorithms learn from labeled training data, making predictions or decisions based on input-output pairs.
- Examples: Linear regression, decision trees, support vector machines (SVM), and neural networks.
- Applications: Email spam detection, image recognition, and medical diagnosis.

2. Unsupervised Learning:
- Definition: Algorithms analyze and group unlabeled data, identifying patterns and structures without prior knowledge of the outcomes.
- Examples: K-means clustering, hierarchical clustering, and principal component analysis (PCA).
- Applications: Customer segmentation, market basket analysis, and anomaly detection.

3. Reinforcement Learning:
- Definition: Algorithms learn by interacting with an environment, receiving rewards or penalties based on their actions, and optimizing for long-term goals.
- Examples: Q-learning, deep Q-networks (DQN), and policy gradient methods.
- Applications: Robotics, game playing (like AlphaGo), and self-driving cars.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://news.1rj.ru/str/datasciencefun

Like if you need similar content

ENJOY LEARNING 👍👍
👍4
Data_Analyst.pdf
2.8 MB
Data Analyst Interview Questions and Answers 🧑‍💻
👍2