This media is not supported in your browser
VIEW IN TELEGRAM
مصطفی سلیمان، مدیرعامل بخش هوش مصنوعی ماکروسافت، در مصاحبهای میگوید که در ۳ تا ۵ سال آینده و پیش از سال ۲۰۳۰ شاهد هوش مصنوعی خود بهبوددهنده خواهیم بود.
👀16👍8
Media is too big
VIEW IN TELEGRAM
هوش مصنوعی جایگزینی برای هوش انسانی نیست؛ بلکه ابزاریه برای تقویت خلاقیت و نبوغ بشر.
این فناوری با گسترش مرزهای توانایی فکری و هنری انسان، مانند ابزاری در دست او قرار میگیره تا ایدهها و راهحلهای نوآورانهتری خلق کنه.
Fei-Fei Li
این فناوری با گسترش مرزهای توانایی فکری و هنری انسان، مانند ابزاری در دست او قرار میگیره تا ایدهها و راهحلهای نوآورانهتری خلق کنه.
Fei-Fei Li
👍27❤4👎3🔥1💯1
قبل از ظهور مدل زبانی O1 شرکت OpenAi هدف عمدتا این بود که مدل های زبانی رو به گونه ای آموزش بدن که بتونه مشابه ذهن انسان، به ویژه در فرایند حل مسئله، فکر کنه.
اما مدل های قبلی تنها قادر به تقلید از نمونههای آموزشی بودن، بدین معنا که تنها میتونستند راه حل های از پیش تعیین شده رو باز تولید کنن. این رویکرد، به جای بازنمایی فرآیند پیچیده تفکر، به ارایه پاسخ های کوتاه و گاه بی دلیل بسنده میکرد. انگار جواب ها از یک منبع بیرونی و بدون هیچ گونه استدلال منطقی ارائه شدن.
با ظهور پارادایم جدید، شاهد تحولی شگرف در تولید زنجیرههای تفکر(CoT) هستیم. مدلهای زبانی هم اکنون قادرن زنجیرههای تفکری تولید کنن که به مراتب به تفکر انسانی شباهت دارن.
این زنجیرهها شبیه به مکالمات درونی هستن که در اونها مدل ها نه تنها به پاسخ نهایی میرسن، بلکه مراحل مختلف استدلال و تردید رو نیز به نمایش میگذارن. این امر نشون میده که مدل ها از حالت ساده باز تولید اطلاعات به سمت تولید استدلال های پیچیده و مبتنی بر شواهد در حرکت هستن
اما مدل های قبلی تنها قادر به تقلید از نمونههای آموزشی بودن، بدین معنا که تنها میتونستند راه حل های از پیش تعیین شده رو باز تولید کنن. این رویکرد، به جای بازنمایی فرآیند پیچیده تفکر، به ارایه پاسخ های کوتاه و گاه بی دلیل بسنده میکرد. انگار جواب ها از یک منبع بیرونی و بدون هیچ گونه استدلال منطقی ارائه شدن.
با ظهور پارادایم جدید، شاهد تحولی شگرف در تولید زنجیرههای تفکر(CoT) هستیم. مدلهای زبانی هم اکنون قادرن زنجیرههای تفکری تولید کنن که به مراتب به تفکر انسانی شباهت دارن.
این زنجیرهها شبیه به مکالمات درونی هستن که در اونها مدل ها نه تنها به پاسخ نهایی میرسن، بلکه مراحل مختلف استدلال و تردید رو نیز به نمایش میگذارن. این امر نشون میده که مدل ها از حالت ساده باز تولید اطلاعات به سمت تولید استدلال های پیچیده و مبتنی بر شواهد در حرکت هستن
👍18❤1
Tensorflow(@CVision)
قبل از ظهور مدل زبانی O1 شرکت OpenAi هدف عمدتا این بود که مدل های زبانی رو به گونه ای آموزش بدن که بتونه مشابه ذهن انسان، به ویژه در فرایند حل مسئله، فکر کنه. اما مدل های قبلی تنها قادر به تقلید از نمونههای آموزشی بودن، بدین معنا که تنها میتونستند راه…
در زنجیره های تفکر جدید، اطلاعات به صورت یکپارچه تر توزیع شدن، به این معنی که هر عنصر از زنجیره، در شکل گیری معنا و مفهوم کلی نقش ایفا میکنه و دیگه شاهد ارایه پاسخ هایی نیستیم که در اونا یک کلمه یا عبارت به تنهایی بار معنایی کل جمله رو به دوش بکشه.
این تحول، پرسشهای رو در مورد ماهیت هوش و تفکر مطرح میکنه.
آیا میشه به مدل های زبانی که قادر به تولید زنجیرههای تفکر مشابه انسان هستن، عنوان موجوداتی هوشمند رو اطلاق کرد؟
آیا این مدل ها قادر به داشتن آگاهی و درک از جهان اطراف خود هستن؟
این پرسشها، مرزهای بین هوش مصنوعی و هوش طبیعی رو بار دیگر به چالش میکشه.
"O1"
نشون میده که ما در آستانه ورود به عصر جدیدی از هوش مصنوعی هستیم. عصری که در اون مدلهای زبانی نه تنها ابزارهای قدرتمندی برای پردازش اطلاعات، بلکه قادر به تولید تفکر و خلاقیت نیز هستن.
https://aidantr.github.io/files/AI_innovation.pdf
این تحول، پرسشهای رو در مورد ماهیت هوش و تفکر مطرح میکنه.
آیا میشه به مدل های زبانی که قادر به تولید زنجیرههای تفکر مشابه انسان هستن، عنوان موجوداتی هوشمند رو اطلاق کرد؟
آیا این مدل ها قادر به داشتن آگاهی و درک از جهان اطراف خود هستن؟
این پرسشها، مرزهای بین هوش مصنوعی و هوش طبیعی رو بار دیگر به چالش میکشه.
"O1"
نشون میده که ما در آستانه ورود به عصر جدیدی از هوش مصنوعی هستیم. عصری که در اون مدلهای زبانی نه تنها ابزارهای قدرتمندی برای پردازش اطلاعات، بلکه قادر به تولید تفکر و خلاقیت نیز هستن.
https://aidantr.github.io/files/AI_innovation.pdf
2👍3
Tensorflow(@CVision)
چرا این مسئله برای مدلهای زبانی مشکل سازه؟ مدلهای زبانی بزرگ از این قابلیت بهره نمیبرن. اونها از تعامل دائمی و آنی با محیط خود محروم هستن و به همین دلیله برای هر تصمیم کوچیک نیاز به برنامهریزی، پیشبینی و رفتار هدف محور دارن. این موضوع باعث میشه که…
یکی از مخاطبان محترم این مطلب رو در نقد بحث چند روز پیش فرستادن. چند نکته خدمت شما عزیزان عرض کنم
👍1
Tensorflow(@CVision)
یکی از مخاطبان محترم این مطلب رو در نقد بحث چند روز پیش فرستادن. چند نکته خدمت شما عزیزان عرض کنم
نقدی که من به مدل های زبانی در این پست داشتم اینه که برای ساخت مدل جهانی واقعی، باید فراتر از زبان صرف بریم و به مفاهیم دیگه ای مانند منطق، تجربه فیزیکی، و نشونه های اجتماعی توجه کنیم
به نظر من توانایی استفاده درست و روان از زبان، الزاما به معنای درک عمیق از مفاهیم یا داشتن منطق و عقل سلیم نیست.
مدل های زبانی بیشتر به مدلی از جهان واژگان تکیه می کنن که در اون، معنی از طریق ارتباط میان کلمات شکل میگیره، نه با ارجاع به دنیای واقعی، و به نظر من زبان به تنهایی نمیتونه واقعیت و درک انسانی رو به طور کامل منعکس کنه
حقیقتا برای من مدل های زبانی کنونی بیشتر شبیه غار افلاطون هستن، افرادی که درون غار هستن تنها سایههایی از واقعیت رو میبینن و تصورات خودشون رو بر اساس این سایهها میسازن. مدلهای زبانی بزرگ هم مشابه این افرادن که به جای واقعیت، سایههایی از جهان واژگان رو میبینن و بر اساس اون زبان رو باز تولید میکنن.
این مدلها تنها بازتابهای زبانی از واقعیت رو درک میکنند، نه خود واقعیت
هر چند ما انسانها هم دست کمی از مدل های زبانی نداریم
این مقاله در خور توجهه دوست داشتید مطالعه کنید
https://arxiv.org/abs/2410.21333
به نظر من توانایی استفاده درست و روان از زبان، الزاما به معنای درک عمیق از مفاهیم یا داشتن منطق و عقل سلیم نیست.
مدل های زبانی بیشتر به مدلی از جهان واژگان تکیه می کنن که در اون، معنی از طریق ارتباط میان کلمات شکل میگیره، نه با ارجاع به دنیای واقعی، و به نظر من زبان به تنهایی نمیتونه واقعیت و درک انسانی رو به طور کامل منعکس کنه
حقیقتا برای من مدل های زبانی کنونی بیشتر شبیه غار افلاطون هستن، افرادی که درون غار هستن تنها سایههایی از واقعیت رو میبینن و تصورات خودشون رو بر اساس این سایهها میسازن. مدلهای زبانی بزرگ هم مشابه این افرادن که به جای واقعیت، سایههایی از جهان واژگان رو میبینن و بر اساس اون زبان رو باز تولید میکنن.
این مدلها تنها بازتابهای زبانی از واقعیت رو درک میکنند، نه خود واقعیت
هر چند ما انسانها هم دست کمی از مدل های زبانی نداریم
این مقاله در خور توجهه دوست داشتید مطالعه کنید
https://arxiv.org/abs/2410.21333
arXiv.org
Mind Your Step (by Step): Chain-of-Thought can Reduce Performance...
Chain-of-thought (CoT) prompting has become a widely used strategy for improving large language and multimodal model performance. However, it is still an open question under which settings CoT...
👌15👍8❤1👎1
یه شرکت چینی فقط با ۲۰۰۰ تا GPU مدل رقیب GPT-4 رو آموزش داد.
01.ai
فقط ۳ میلیون دلار خرج کرده، در حالی که OpenAI بین ۸۰ تا ۱۰۰ میلیون دلار هزینه کرد
https://www.tomshardware.com/tech-industry/artificial-intelligence/chinese-company-trained-gpt-4-rival-with-just-2-000-gpus-01-ai-spent-usd3m-compared-to-openais-usd80m-to-usd100m
01.ai
فقط ۳ میلیون دلار خرج کرده، در حالی که OpenAI بین ۸۰ تا ۱۰۰ میلیون دلار هزینه کرد
https://www.tomshardware.com/tech-industry/artificial-intelligence/chinese-company-trained-gpt-4-rival-with-just-2-000-gpus-01-ai-spent-usd3m-compared-to-openais-usd80m-to-usd100m
Tom's Hardware
Chinese company trained GPT-4 rival with just 2,000 GPUs — 01.ai spent $3M compared to OpenAI's $80M to $100M
With fewer resources, you have to maximize their efficiency.
👍21😁5👌2
This media is not supported in your browser
VIEW IN TELEGRAM
کریس اولا میگه ما شبکههای عصبی رو برنامه نویسی نمیکنیم، بلکه آنها رو پرورش میدیم.
این فرآیند بیشتر شبیه مشاهده و مطالعه ارگانیسم های زیستیه تا یه طراحی مصنوعی صرف. همونطور که در نورولوژی، مسیرهای عصبی از تعامل و تجربه شکل میگیرن، در شبکههای عصبی نیز یادگیری و تحول، نه از پیش تعیین شده، بلکه از درون تعاملات و تطابقها شکل میگیرن. این نگاه، ماهیت شبکههای عصبی رو به پدیدهای زنده و پویا نزدیک تر میکنه تا یه سیستم مهندسی شده خطی.
https://youtu.be/ugvHCXCOmm4?feature=shared
این فرآیند بیشتر شبیه مشاهده و مطالعه ارگانیسم های زیستیه تا یه طراحی مصنوعی صرف. همونطور که در نورولوژی، مسیرهای عصبی از تعامل و تجربه شکل میگیرن، در شبکههای عصبی نیز یادگیری و تحول، نه از پیش تعیین شده، بلکه از درون تعاملات و تطابقها شکل میگیرن. این نگاه، ماهیت شبکههای عصبی رو به پدیدهای زنده و پویا نزدیک تر میکنه تا یه سیستم مهندسی شده خطی.
https://youtu.be/ugvHCXCOmm4?feature=shared
👍29👎4
می شه گفت بیشتر پیشرفت های هوش مصنوعی نتیجه بهبود توان محاسباتی بوده، که بیشترش هم از کاهش دقت عددی برای سرعت بخشیدن به کارها (مثل رفتن از 32 بیت به 16 بیت و بعد 8 بیت) به دست اومده.
اما حالا به نظر می رسه که روند کوانتیزاسیون داره به انتهای خط میرسه، از طرفی وقتی این موضوع رو با محدودیت های فیزیکی (مثل مصرف انرژی) ترکیب کنیم، شرایطی به وجود میاد که انگار دیگه دوران بزرگ تر کردن مدل ها با افزایش قدرت محاسباتی داره به پایان میرسه.
به عبارتی بازدهی رو نمیشه دور زد. اگه کوانتیزاسیون دیگه جواب نده ، پس روشهایی مثل sparsification و سایر مکانیزمهای بهینهسازی هم جواب نخواهد داد و نیاز به یک تغییر پارادایم در این زمینه هستیم.
دیگه نمیشه تنها با افزایش قدرت و داده، کیفیت مدل ها رو بالا ببریم، بلکه باید هوشمندانه تر به موضوع نگاه کنیم و راههایی برای سازگاری با این محدودیتها پیدا کنیم.
برداشت من اینه که هرچه دانش بیشتری در وزن های مدل فشرده شه و این وزن ها بیانگر اطلاعات بیشتری از دادهها باشه، کوچک ترین تغییر یا آشفتگی در اونها میتونه اثرات ویران گر بیشتری داشته باشه. انگار هر چه یه ظرف رو پرتر کنیم، ثبات اون در برابر لرزش ها کمتر میشه، در نتیجه، مرزی وجود دارده که از اون به بعد، افزودن دانش بیشتر نه تنها مفید نیست، بلکه باعث شکنندگی بیشتر میشه.
این مقاله با عنوان Scaling Laws for Precision که به صورت مشترک توسط دانشگاه هاروارد، دانشگاه استنفورد و MIT منتشر شده، برای اولین بار روابط کمی میان دقت، تعداد پارامترها و حجم دادهها در مدل های زبانی بزرگ رو تعیین کرده و راهنمای نظری مهمی برای روندهای فعلی در توسعه مدل ها فراهم کرده.
https://arxiv.org/abs/2411.04330
اما حالا به نظر می رسه که روند کوانتیزاسیون داره به انتهای خط میرسه، از طرفی وقتی این موضوع رو با محدودیت های فیزیکی (مثل مصرف انرژی) ترکیب کنیم، شرایطی به وجود میاد که انگار دیگه دوران بزرگ تر کردن مدل ها با افزایش قدرت محاسباتی داره به پایان میرسه.
به عبارتی بازدهی رو نمیشه دور زد. اگه کوانتیزاسیون دیگه جواب نده ، پس روشهایی مثل sparsification و سایر مکانیزمهای بهینهسازی هم جواب نخواهد داد و نیاز به یک تغییر پارادایم در این زمینه هستیم.
دیگه نمیشه تنها با افزایش قدرت و داده، کیفیت مدل ها رو بالا ببریم، بلکه باید هوشمندانه تر به موضوع نگاه کنیم و راههایی برای سازگاری با این محدودیتها پیدا کنیم.
برداشت من اینه که هرچه دانش بیشتری در وزن های مدل فشرده شه و این وزن ها بیانگر اطلاعات بیشتری از دادهها باشه، کوچک ترین تغییر یا آشفتگی در اونها میتونه اثرات ویران گر بیشتری داشته باشه. انگار هر چه یه ظرف رو پرتر کنیم، ثبات اون در برابر لرزش ها کمتر میشه، در نتیجه، مرزی وجود دارده که از اون به بعد، افزودن دانش بیشتر نه تنها مفید نیست، بلکه باعث شکنندگی بیشتر میشه.
این مقاله با عنوان Scaling Laws for Precision که به صورت مشترک توسط دانشگاه هاروارد، دانشگاه استنفورد و MIT منتشر شده، برای اولین بار روابط کمی میان دقت، تعداد پارامترها و حجم دادهها در مدل های زبانی بزرگ رو تعیین کرده و راهنمای نظری مهمی برای روندهای فعلی در توسعه مدل ها فراهم کرده.
https://arxiv.org/abs/2411.04330
arXiv.org
Scaling Laws for Precision
Low precision training and inference affect both the quality and cost of language models, but current scaling laws do not account for this. In this work, we devise "precision-aware" scaling laws...
❤26🔥8👍6
Tensorflow(@CVision)
در گفتگوی نسبتا طولانی زیر با Leopold Aschenbrenner کارمند سابق OpenAI نقطه نظرات درخور تاملی در باره هوش مصنوعی عمومی AGI رد و بدل میشه این محقق سابق OpenAI می گه رسیدن به هوش مصنوعی عمومی (AGI) تا سال 2027 به طرز چشمگیری محتمل هست. نیازی به باور به داستان…
قبلا در مورد دعوای آمریکا و چین بر سر تایوان به صورت مختصر مطالبی در این پست نوشتم.
از آنجایی که مطالب این کانال الزاما به هوش مصنوعی اختصاص داره، وارد موضوعات کلان سیاسی این جریان نمیشم اما از بعد فناوری، فشار آمریکا برای محفوظ نگه داشتن سهم خوش از شرکت TSMC در راستای کاهش سرعت چین در دستیابی به سخت افزار های قدرتمند جهت توسعه فناوری هوش مصنوعی این کشور هست.
حالا گزارش سال ۲۰۲۴ کمیسیون بررسی اقتصادی و امنیتی آمریکا، که چند روز پیش منتشر شد به تحلیل گسترده ای از روابط پیچیده اقتصادی، امنیتی و فناوری میان ایالات متحده و چین میپردازه. موضوعات بسیار متنوعی بحث میشه اما مواردی که مربوط به هوش مصنوعی هست به شرح زیرهستن:
در این گزارش توصیه کرده که کنگره، طرحی در مقیاس پروژهی منهتن رو بنیانگذاری و تأمین مالی کنه که به طور اختصاصی برای دستیابی به توانمندی در زمینهی هوش عمومی مصنوعی (AGI) به رقابت بپردازه.
هوش عمومی مصنوعی به طور کلی به سامانه هایی گفته میشه که در تمامی حوزههای شناختی، برابر یا فراتر از قابلیت های انسانی عمل کنه. از جمله اقدامات مشخصی که کمیسیون برای کنگره پیشنهاد میکنه عبارتند از:
اعطای اختیار انعقاد قراردادهای بلندمدت به شاخهی اجرایی دولت و تخصیص منابع مالی مرتبط به شرکتهای پیشرو در زمینه هوش مصنوعی، خدمات ابری، مراکز داده و سایر بخشها، به منظور پیشبرد سیاست مذکور با سرعت و مقیاسی متناسب با هدف برتری ایالات متحده در زمینه AGI
هدایت وزیر دفاع ایالات متحده برای تخصیص رتبه بندی "DX" در نظام اولویت ها و تخصیص های دفاعی به موارد مرتبط با اکوسیستم هوش مصنوعی، تا اطمینان حاصل شه که این پروژه در اولویت ملی قرار داره.
در واقع این توصیه ها گواهی بر تلاشی بنیادین برای تصاحب آینده، جایی که مرز میان انسان و ماشین در سایه قدرت شناختی و توانمندیهای بیپایان به پرسش گرفته میشه.
تقریبا تمام کشورهای توسعه یافته بر توسعه هوش عمومی مصنوعی (AGI) تمرکز خواهند کرد و اگر به درستی مدیریت نشه، ممکنه وارد عصر جدیدی از جنگ بشیم. به نظر میرسه که آمریکا قصد داره قدرتمندترین هوش مصنوعی رو برای مهار رقبا هرچه سریع تر توسعه بده.
https://www.uscc.gov/sites/default/files/2024-11/2024_Executive_Summary.pdf
از آنجایی که مطالب این کانال الزاما به هوش مصنوعی اختصاص داره، وارد موضوعات کلان سیاسی این جریان نمیشم اما از بعد فناوری، فشار آمریکا برای محفوظ نگه داشتن سهم خوش از شرکت TSMC در راستای کاهش سرعت چین در دستیابی به سخت افزار های قدرتمند جهت توسعه فناوری هوش مصنوعی این کشور هست.
حالا گزارش سال ۲۰۲۴ کمیسیون بررسی اقتصادی و امنیتی آمریکا، که چند روز پیش منتشر شد به تحلیل گسترده ای از روابط پیچیده اقتصادی، امنیتی و فناوری میان ایالات متحده و چین میپردازه. موضوعات بسیار متنوعی بحث میشه اما مواردی که مربوط به هوش مصنوعی هست به شرح زیرهستن:
در این گزارش توصیه کرده که کنگره، طرحی در مقیاس پروژهی منهتن رو بنیانگذاری و تأمین مالی کنه که به طور اختصاصی برای دستیابی به توانمندی در زمینهی هوش عمومی مصنوعی (AGI) به رقابت بپردازه.
هوش عمومی مصنوعی به طور کلی به سامانه هایی گفته میشه که در تمامی حوزههای شناختی، برابر یا فراتر از قابلیت های انسانی عمل کنه. از جمله اقدامات مشخصی که کمیسیون برای کنگره پیشنهاد میکنه عبارتند از:
اعطای اختیار انعقاد قراردادهای بلندمدت به شاخهی اجرایی دولت و تخصیص منابع مالی مرتبط به شرکتهای پیشرو در زمینه هوش مصنوعی، خدمات ابری، مراکز داده و سایر بخشها، به منظور پیشبرد سیاست مذکور با سرعت و مقیاسی متناسب با هدف برتری ایالات متحده در زمینه AGI
هدایت وزیر دفاع ایالات متحده برای تخصیص رتبه بندی "DX" در نظام اولویت ها و تخصیص های دفاعی به موارد مرتبط با اکوسیستم هوش مصنوعی، تا اطمینان حاصل شه که این پروژه در اولویت ملی قرار داره.
در واقع این توصیه ها گواهی بر تلاشی بنیادین برای تصاحب آینده، جایی که مرز میان انسان و ماشین در سایه قدرت شناختی و توانمندیهای بیپایان به پرسش گرفته میشه.
تقریبا تمام کشورهای توسعه یافته بر توسعه هوش عمومی مصنوعی (AGI) تمرکز خواهند کرد و اگر به درستی مدیریت نشه، ممکنه وارد عصر جدیدی از جنگ بشیم. به نظر میرسه که آمریکا قصد داره قدرتمندترین هوش مصنوعی رو برای مهار رقبا هرچه سریع تر توسعه بده.
https://www.uscc.gov/sites/default/files/2024-11/2024_Executive_Summary.pdf
❤5👍3👀2
Automated-AI-Web-Researcher
یه ابزار زبانی متن بازه که برای اجرای پژوهش های آنلاین طراحی شده. این برنامه با استفاده از مدل های زبانی لوکال مثل Ollama، به شما این امکان رو میده تنها با وارد کردن یک سوال یا موضوع، یک فایل متنی پر از محتوای پژوهشی همراه با لینک منابع و خلاصهای از یافتهها دریافت کنین.
در واقع برنامه به طور خودکار در اینترنت جستجو میکنه، محتوا جمع آوری کرده و یک فایل متنی شامل اطلاعات و لینک منابع به همراه خلاصه ای از یافته ها تولید میکنه. علاوه بر این، امکان پرسیدن سؤالات بیشتر از یافتههای پژوهش نیز وجود داره.
روند کار به این صورت هست که ابتدا پرسش شما رو به چند حوزه پژوهشی تقسیم میکنه (تا ۵ محور اصلی)، بعد اونها رو بر اساس میزان ارتباط اولویت بندی کرده و از مرتبط ترین بخش شروع به جستجو میکنه.
پس از تکمیل جستجو، محتوای یافته ها رو بررسی کرده و حوزههای جدیدی برای تحقیق شناسایی میکنه.
این قابلیت گاهی محورهای جدید و نوآورانه ای ایجاد میکنه که ممکنه به ذهن شما نرسه. در پایان هم برنامه تمامی اطلاعات جمعآوری شده رو خلاصه کرده و پاسخی جامع به سوال اصلی شما ارایه میکنه. حتی میتونید از یافته ها سوالات بیشتری بپرسین.
به عبارتی ویژگیهای کلیدی به شرح زیر هست:
تولید محورهای پژوهشی جدید بر اساس یافتهها.
ذخیره تمامی محتوای یافتهشده به همراه لینک منابع.
تولید خلاصهای جامع از پژوهش و پاسخ به سؤال اولیه.
امکان مکالمه با مدل زبانی برای بررسی جزئیات بیشتر از یافتهها.
قابلیت متوقف کردن یا ادامه دادن پژوهش در هر زمان.
کاملا لوکال و روی سیستم شما اجرا میشه، بدون نیاز به ارسال دادهها به سرور خارجی.
https://github.com/TheBlewish/Automated-AI-Web-Researcher-Ollama
یه ابزار زبانی متن بازه که برای اجرای پژوهش های آنلاین طراحی شده. این برنامه با استفاده از مدل های زبانی لوکال مثل Ollama، به شما این امکان رو میده تنها با وارد کردن یک سوال یا موضوع، یک فایل متنی پر از محتوای پژوهشی همراه با لینک منابع و خلاصهای از یافتهها دریافت کنین.
در واقع برنامه به طور خودکار در اینترنت جستجو میکنه، محتوا جمع آوری کرده و یک فایل متنی شامل اطلاعات و لینک منابع به همراه خلاصه ای از یافته ها تولید میکنه. علاوه بر این، امکان پرسیدن سؤالات بیشتر از یافتههای پژوهش نیز وجود داره.
روند کار به این صورت هست که ابتدا پرسش شما رو به چند حوزه پژوهشی تقسیم میکنه (تا ۵ محور اصلی)، بعد اونها رو بر اساس میزان ارتباط اولویت بندی کرده و از مرتبط ترین بخش شروع به جستجو میکنه.
پس از تکمیل جستجو، محتوای یافته ها رو بررسی کرده و حوزههای جدیدی برای تحقیق شناسایی میکنه.
این قابلیت گاهی محورهای جدید و نوآورانه ای ایجاد میکنه که ممکنه به ذهن شما نرسه. در پایان هم برنامه تمامی اطلاعات جمعآوری شده رو خلاصه کرده و پاسخی جامع به سوال اصلی شما ارایه میکنه. حتی میتونید از یافته ها سوالات بیشتری بپرسین.
به عبارتی ویژگیهای کلیدی به شرح زیر هست:
تولید محورهای پژوهشی جدید بر اساس یافتهها.
ذخیره تمامی محتوای یافتهشده به همراه لینک منابع.
تولید خلاصهای جامع از پژوهش و پاسخ به سؤال اولیه.
امکان مکالمه با مدل زبانی برای بررسی جزئیات بیشتر از یافتهها.
قابلیت متوقف کردن یا ادامه دادن پژوهش در هر زمان.
کاملا لوکال و روی سیستم شما اجرا میشه، بدون نیاز به ارسال دادهها به سرور خارجی.
https://github.com/TheBlewish/Automated-AI-Web-Researcher-Ollama
GitHub
GitHub - TheBlewish/Automated-AI-Web-Researcher-Ollama: A python program that turns an LLM, running on Ollama, into an automated…
A python program that turns an LLM, running on Ollama, into an automated researcher, which will with a single query determine focus areas to investigate, do websearches and scrape content from vari...
👍16
محققین یه رابط مغزی زنده ایجاد کردن که شامل نورون های کنترل شونده با نور هست. این نورون ها با موفقیت در مغز یک موش ادغام شدن و مدارهای عصبی جدیدی رو شکل دادن و با استفاده از نور کنترل میشن. این دستاورد ممکنه روزی امکان ایجاد تجربیات حسی مصنوعی دقیق رو فراهم کنه.
این روش با رابط های سنتی مغز و کامپیوتر تفاوت داره و به جای استفاده از الکترودها یا موادی که مغز اونها رو پس میزنه، نورون های زنده جدیدی به مغز اضافه میکنه که بخشی از خود مغز میشن.
https://science.xyz/news/biohybrid-neural-interfaces/
این روش با رابط های سنتی مغز و کامپیوتر تفاوت داره و به جای استفاده از الکترودها یا موادی که مغز اونها رو پس میزنه، نورون های زنده جدیدی به مغز اضافه میکنه که بخشی از خود مغز میشن.
https://science.xyz/news/biohybrid-neural-interfaces/
Science Corporation
Biohybrid neural interfaces: an old idea enabling a completely new space of possibilities | Science Corporation
Science Corporation is a clinical-stage medical technology company.
👍10🤔1
Forwarded from 🚀 کلاسویژن | یادگیری هوش مصنوعی از پایه تا پیشرفته
#تخفیف #opencv
📢 0️⃣5️⃣ درصد تخفیف دوره opencv برای 100 نفر اول:
✅گام نخست: ورود با لینک خرید با تخفیف
✅وارد کردن کد تخفیف 50 درصدی:
📢 0️⃣5️⃣ درصد تخفیف دوره opencv برای 100 نفر اول:
✅گام نخست: ورود با لینک خرید با تخفیف
✅وارد کردن کد تخفیف 50 درصدی:
COUPON-9f654👌5👎2
This media is not supported in your browser
VIEW IN TELEGRAM
Genie 2: A large-scale foundation world model
Introducing Genie 2: our AI model that can create an endless variety of playable 3D worlds - all from a single image. 🖼
These types of large-scale foundation world models could enable future agents to be trained and evaluated in an endless number of virtual environments. →
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
این یه مدل جهانسازی پیشرفتهست که میتونه بینهایت محیط سهبعدی قابل بازی و تعاملی بسازه. یعنی شما (یا یه عامل هوش مصنوعی) میتونید فقط با دادن یه تصویر ساده، وارد یه دنیای شگفتانگیز بشید و با کیبورد و موس توش بازی کنید یا ازش برای آموزش هوش مصنوعی استفاده کنید!
Introducing Genie 2: our AI model that can create an endless variety of playable 3D worlds - all from a single image. 🖼
These types of large-scale foundation world models could enable future agents to be trained and evaluated in an endless number of virtual environments. →
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
این یه مدل جهانسازی پیشرفتهست که میتونه بینهایت محیط سهبعدی قابل بازی و تعاملی بسازه. یعنی شما (یا یه عامل هوش مصنوعی) میتونید فقط با دادن یه تصویر ساده، وارد یه دنیای شگفتانگیز بشید و با کیبورد و موس توش بازی کنید یا ازش برای آموزش هوش مصنوعی استفاده کنید!
👍13🤯6🔥1
👍11👎4🙏1
مراسم دریافت جایزه نوبل توسط برندگان این جایزه از جمله دکتر جفری هینتون به صورت زنده
https://www.youtube.com/live/6-A4dUowT4Q?si=j4yZx2rXU2av9aI0
https://www.youtube.com/live/6-A4dUowT4Q?si=j4yZx2rXU2av9aI0
YouTube
2024 Nobel Prize award ceremony
Join us live in Stockholm for the Nobel Prize award ceremony which takes place at the Stockholm Concert Hall, Sweden, on 10 December – the anniversary of Alfred Nobel’s death. At the ceremony, the Nobel Prize in Physics, Chemistry, Physiology or Medicine…
❤13👍3😁1🤩1
Forwarded from 🚀 کلاسویژن | یادگیری هوش مصنوعی از پایه تا پیشرفته
شب یلدایی با تخفیف ویژه! 🎁
به مناسبت بلندترین شب سال، 30% تخفیف برای تمامی دورهها و محتواهای آموزشی سایت class.vision در نظر گرفتهایم. 🌟
📌 کد تخفیف:
📅 مهلت استفاده: فقط تا پایان شب یلدا
فرصت رو از دست ندید و همین حالا از این تخفیف استفاده کنید! 🚀
[لینک دورهها]
به مناسبت بلندترین شب سال، 30% تخفیف برای تمامی دورهها و محتواهای آموزشی سایت class.vision در نظر گرفتهایم. 🌟
📌 کد تخفیف:
offya📅 مهلت استفاده: فقط تا پایان شب یلدا
فرصت رو از دست ندید و همین حالا از این تخفیف استفاده کنید! 🚀
[لینک دورهها]
1👌4
Forwarded from 🚀 کلاسویژن | یادگیری هوش مصنوعی از پایه تا پیشرفته
وبینار رایگان: تفسیرپذیری شبکههای عصبی گرافی
این وبینار بهصورت آنلاین برگزار میشود.
🗓 زمان: پنج شنبه، ۱۳ دی ۱۴۰۳
⏰ ساعت: 10 الی 12 صبح
https://class.vision/product/explainable-ai-graph-neural-networks/
این وبینار بهصورت آنلاین برگزار میشود.
🗓 زمان: پنج شنبه، ۱۳ دی ۱۴۰۳
⏰ ساعت: 10 الی 12 صبح
https://class.vision/product/explainable-ai-graph-neural-networks/
👍12
آیا میتوان مهارتها را مستقیماً به مغز انتقال داد؟ واقعیت علمی پشت رؤیای فیلم ماتریکس (🧠to🧠)!!
آیا واقعا میشه اطلاعات مغز یه آدم حرفه ای تو یه کاریو روی مغز یه آدم مبتدی آپلود کرد و اونم بی زحمت حرفه ای شه؟
این ادعاییه که یه تیم تحقیقاتی مطرح کردند...
در سال ۲۰۱۶، آزمایشگاههای HRL در کالیفرنیا ادعا کردند که با استفاده از تحریک الکتریکی مغز (tDCS)، میتوان مهارتهای پیچیدهای مانند خلبانی را به افراد مبتدی منتقل کرد.
https://www.sciencealert.com/sorry-guys-scientists-haven-t-invented-a-matrix-style-device-that-instantly-uploads-data-to-your-brain
با این حال، این مطالعه با انتقاداتی مواجه شد. برخی محققان به نمونه کوچک شرکتکنندگان و تضاد منافع احتمالی اشاره کردهاند که میتواند به اعتبار نتایج آسیب برساند.
علاوه بر این، نتایج مشابه در مطالعات دیگر تکرار نشده است. به عنوان مثال، مطالعهای در سال ۲۰۲۳ نشان داد که تحریک الکتریکی مغز تأثیر قابلتوجهی بر بهبود مهارتهای حرکتی ندارد، شاید اثر پلاسیبو* بوده که افراد کمی بهتر عمل میکردند.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11101143/
در نتیجه، به دلیل این چالشها و عدم تکرار نتایج، این فناوری در سالهای بعد توسعه نیافته و عملیاتی نشده است.
*پلاسیبو (Placebo) به مادهای یا درمانی گفته میشود که هیچ اثر واقعی درمانی ندارد اما به واسطه تلقین کردن و به دلیل باور فرد به اثربخشی آن، ممکن است باعث بهبود یا تغییراتی در وضعیت او شود. مثلا ممکنه چون گفتند اطلاعات مغز یه فرد خبره را بهت انتقال میدیم طرف تلقین کرده و یه کم بهتر تو تست های بعدی ظاهر شده...
آیا واقعا میشه اطلاعات مغز یه آدم حرفه ای تو یه کاریو روی مغز یه آدم مبتدی آپلود کرد و اونم بی زحمت حرفه ای شه؟
این ادعاییه که یه تیم تحقیقاتی مطرح کردند...
در سال ۲۰۱۶، آزمایشگاههای HRL در کالیفرنیا ادعا کردند که با استفاده از تحریک الکتریکی مغز (tDCS)، میتوان مهارتهای پیچیدهای مانند خلبانی را به افراد مبتدی منتقل کرد.
https://www.sciencealert.com/sorry-guys-scientists-haven-t-invented-a-matrix-style-device-that-instantly-uploads-data-to-your-brain
با این حال، این مطالعه با انتقاداتی مواجه شد. برخی محققان به نمونه کوچک شرکتکنندگان و تضاد منافع احتمالی اشاره کردهاند که میتواند به اعتبار نتایج آسیب برساند.
علاوه بر این، نتایج مشابه در مطالعات دیگر تکرار نشده است. به عنوان مثال، مطالعهای در سال ۲۰۲۳ نشان داد که تحریک الکتریکی مغز تأثیر قابلتوجهی بر بهبود مهارتهای حرکتی ندارد، شاید اثر پلاسیبو* بوده که افراد کمی بهتر عمل میکردند.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11101143/
در نتیجه، به دلیل این چالشها و عدم تکرار نتایج، این فناوری در سالهای بعد توسعه نیافته و عملیاتی نشده است.
*پلاسیبو (Placebo) به مادهای یا درمانی گفته میشود که هیچ اثر واقعی درمانی ندارد اما به واسطه تلقین کردن و به دلیل باور فرد به اثربخشی آن، ممکن است باعث بهبود یا تغییراتی در وضعیت او شود. مثلا ممکنه چون گفتند اطلاعات مغز یه فرد خبره را بهت انتقال میدیم طرف تلقین کرده و یه کم بهتر تو تست های بعدی ظاهر شده...
ScienceAlert
Scientists Claim They've Invented a Matrix-Style Device That Instantly Uploads Skills to Your Brain
If it sounds too good to be true, it probably is. This week, a team from California research facility, HRL Laboratories, announced that they’d invented an interface that could teach total novices to pilot a flight simulator using a technique called
1👍16❤2