Review: TensorFlow shines a light on deep learning | InfoWorld
http://www.infoworld.com/article/3127397/artificial-intelligence/review-tensorflow-shines-a-light-on-deep-learning.html
http://www.infoworld.com/article/3127397/artificial-intelligence/review-tensorflow-shines-a-light-on-deep-learning.html
InfoWorld
Review: TensorFlow shines a light on deep learning
Google's open source framework for machine learning and neural networks is fast and flexible, rich in models, and easy to run on CPUs or GPUs
⭕️تانسور چیست؟
در ریاضی، #تانسور آرایهای از اعداد است یعنی یک سری اعداد که به طور خاصی مرتب شدهاند یعنی در یک جدول فرضی چیده شدهاند. در واقع تانسور تعمیمی است از مفاهیم اسکالر، بردار و #ماتریس .
تانسور آرایهای است از اعداد که در یک جدول چیده شدهاند. این جدول در حالت کلی میتواند به صورت... N x M x O x P x باشد که حروف بزرگ هر کدام میتوانند نمایندهٔ یک عدد طبیعی باشند و x نشان دهندهٔ عمل ضرب بین آنهاست. تانسور در ساده ترین حالت میتواند یک عضو داشته باشد. در حالت کمی پیشرفته تر تانسور میتواند به صورت بردار باشد. یعنی وقتی شما بردار A را به صورت(x,y,z) نشان میدهید در حقیقت یک تانسور دارید. در حالتی باز هم پیشرفته تر تانسور میتواند دو بعدی باشد(به صورت ماتریسی) یعنی مثلاً جدول ما 2*2 باشد یعنی دو سطر و دو ستون داشته باشد.
چنین تانسوری دارای ۴ عضو است. به طور کلی تانسورهای دو بعدی و بالاتر از دو بعد را با نام ماتریس هم میشناسند.
بیشتر:
🔗https://en.wikipedia.org/wiki/Tensor
⭕️تانسورها در تنسرفلو:
تنسورفلو در واقع از داده ساختار تانسور برای داده ها استفاده میکند.
در واقع شما میتوانید تانسور ها در تنسورفلو را به صورت یک ماتریس n-بعدی در نظر بگیرید.
تانسور ها در تنسورفلو دارای نوع ایستا اما ابعاد پویا هستند.
فقط داده هایی از نوع تانسور میتوانند بین نودهای گراف محاسباتی تنسورفلو جا به جا شوند (خروجی و وردی نودها).
اطلاعات بیشتر و اطلاعاتی از رنک – نوع و شکل تانسورها:
🔗https://www.tensorflow.org/versions/r0.10/resources/dims_types
#تانسور #تنسور #tensor #tensorflow
در ریاضی، #تانسور آرایهای از اعداد است یعنی یک سری اعداد که به طور خاصی مرتب شدهاند یعنی در یک جدول فرضی چیده شدهاند. در واقع تانسور تعمیمی است از مفاهیم اسکالر، بردار و #ماتریس .
تانسور آرایهای است از اعداد که در یک جدول چیده شدهاند. این جدول در حالت کلی میتواند به صورت... N x M x O x P x باشد که حروف بزرگ هر کدام میتوانند نمایندهٔ یک عدد طبیعی باشند و x نشان دهندهٔ عمل ضرب بین آنهاست. تانسور در ساده ترین حالت میتواند یک عضو داشته باشد. در حالت کمی پیشرفته تر تانسور میتواند به صورت بردار باشد. یعنی وقتی شما بردار A را به صورت(x,y,z) نشان میدهید در حقیقت یک تانسور دارید. در حالتی باز هم پیشرفته تر تانسور میتواند دو بعدی باشد(به صورت ماتریسی) یعنی مثلاً جدول ما 2*2 باشد یعنی دو سطر و دو ستون داشته باشد.
چنین تانسوری دارای ۴ عضو است. به طور کلی تانسورهای دو بعدی و بالاتر از دو بعد را با نام ماتریس هم میشناسند.
بیشتر:
🔗https://en.wikipedia.org/wiki/Tensor
⭕️تانسورها در تنسرفلو:
تنسورفلو در واقع از داده ساختار تانسور برای داده ها استفاده میکند.
در واقع شما میتوانید تانسور ها در تنسورفلو را به صورت یک ماتریس n-بعدی در نظر بگیرید.
تانسور ها در تنسورفلو دارای نوع ایستا اما ابعاد پویا هستند.
فقط داده هایی از نوع تانسور میتوانند بین نودهای گراف محاسباتی تنسورفلو جا به جا شوند (خروجی و وردی نودها).
اطلاعات بیشتر و اطلاعاتی از رنک – نوع و شکل تانسورها:
🔗https://www.tensorflow.org/versions/r0.10/resources/dims_types
#تانسور #تنسور #tensor #tensorflow
What is TPU ?!
(Tensor processing unit)
تصویر: http://cdn.mos.cms.futurecdn.net/95b214f2e6ed15a55df3e6a46d28f768-970-80.jpg
تی.پی.یو یا واحد پردازش تانسور نوعی "مدارهای مجتمع با کاربرد خاص" هستند که به طور خاص برای کارهای یادگیری ماشین توسعه داده شده اند.
در مقایسه با GPU ها که در سالهای اخیر علوه بر کاربرد اصلی کارهای گرافیکی برای همین دست مسائل استفاده شده؛ TPUها برای حجم بالاتر داده ولی دقیق تر(مثلا 8 بیتی) و کاهش محاسبات طراحی شده اند.
گوگل که این TPUها را برای کارهای خودش طراحی کرده, ادعا کرده این واحدهای پردازشی تا 10 برابر سریع تر GPU ها برای کارهای #یادگیری_ماشین هستند.
"The TPU used lower precision of 8 bit and possibly lower to get similar performance to what Myriad 2 delivers today. Similar to us they optimized for use with #TensorFlow," said Dr. David Moloney, Movidius' CTO.
اطلاعات بیشتر:
Google's Big Chip Unveil For Machine Learning: Tensor Processing Unit With 10x Better Efficiency
🔗http://www.tomshardware.com/news/google-tensor-processing-unit-machine-learning,31834.html
Google's Tensor Processing Unit explained: this is what the future of computing looks like
🔗http://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unit-explained-this-is-what-the-future-of-computing-looks-like-1326915
مرتبط:
Google’s tensor processing units (TPUs) are interesting, but Nvidia is essential
🔗http://tech.firstpost.com/news-analysis/googles-tensor-processing-units-tpus-are-interesting-but-nvidia-is-essential-316577.html
Google's Tensor Processing Unit could advance Moore's Law 7 years into the future
🔗http://www.pcworld.com/article/3072256/google-io/googles-tensor-processing-unit-said-to-advance-moores-law-seven-years-into-the-future.html
#TPU #GPU #ASIC @CVISION
(Tensor processing unit)
تصویر: http://cdn.mos.cms.futurecdn.net/95b214f2e6ed15a55df3e6a46d28f768-970-80.jpg
تی.پی.یو یا واحد پردازش تانسور نوعی "مدارهای مجتمع با کاربرد خاص" هستند که به طور خاص برای کارهای یادگیری ماشین توسعه داده شده اند.
در مقایسه با GPU ها که در سالهای اخیر علوه بر کاربرد اصلی کارهای گرافیکی برای همین دست مسائل استفاده شده؛ TPUها برای حجم بالاتر داده ولی دقیق تر(مثلا 8 بیتی) و کاهش محاسبات طراحی شده اند.
گوگل که این TPUها را برای کارهای خودش طراحی کرده, ادعا کرده این واحدهای پردازشی تا 10 برابر سریع تر GPU ها برای کارهای #یادگیری_ماشین هستند.
"The TPU used lower precision of 8 bit and possibly lower to get similar performance to what Myriad 2 delivers today. Similar to us they optimized for use with #TensorFlow," said Dr. David Moloney, Movidius' CTO.
اطلاعات بیشتر:
Google's Big Chip Unveil For Machine Learning: Tensor Processing Unit With 10x Better Efficiency
🔗http://www.tomshardware.com/news/google-tensor-processing-unit-machine-learning,31834.html
Google's Tensor Processing Unit explained: this is what the future of computing looks like
🔗http://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unit-explained-this-is-what-the-future-of-computing-looks-like-1326915
مرتبط:
Google’s tensor processing units (TPUs) are interesting, but Nvidia is essential
🔗http://tech.firstpost.com/news-analysis/googles-tensor-processing-units-tpus-are-interesting-but-nvidia-is-essential-316577.html
Google's Tensor Processing Unit could advance Moore's Law 7 years into the future
🔗http://www.pcworld.com/article/3072256/google-io/googles-tensor-processing-unit-said-to-advance-moores-law-seven-years-into-the-future.html
#TPU #GPU #ASIC @CVISION
👍1
TensorFlow: A Flexible, Scalable & Portable System
+فیلم و اسلاید
Summary
Rajat Monga talks about why engineers at #Google built #TensorFlow, an open source software library for numerical computation using data flow graphs, and what were some of the technical challenges in building it. TensorFlow leverages a general computational model that is applicable in a wide variety of other domains, especially for performing large-scale numerical computations.
https://www.infoq.com/presentations/tensorflow
+فیلم و اسلاید
Summary
Rajat Monga talks about why engineers at #Google built #TensorFlow, an open source software library for numerical computation using data flow graphs, and what were some of the technical challenges in building it. TensorFlow leverages a general computational model that is applicable in a wide variety of other domains, especially for performing large-scale numerical computations.
https://www.infoq.com/presentations/tensorflow
InfoQ
TensorFlow: A Flexible, Scalable & Portable System
Rajat Monga talks about why engineers at Google built TensorFlow, an open source software library for numerical computation using data flow graphs, and what were some of the technical challenges in building it. TensorFlow leverages a general computational…
خانه ی #هوشمند مارک #زاکربرگ بنیان گذار فیس بوک که از متدهای نوین هوش مصنوعی نظیر بازشناسی شئ، بازشناسی چهره، بازشناسی گفتار، پردازش زبانهای طبیعی و ... بهره برده است.
زاکربرگ از انگیزه ی خود برای این کار و گام های انجام کارش مینویسد:
https://www.facebook.com/notes/mark-zuckerberg/building-jarvis/10154361492931634/
چالش شخصی من برای سال 2016 ساخت یک هوش مصنوعی ساده برای خانه ام بوده - مثل جارویس در فیلم مرد آهنین...
Building Jarvis:
- Getting Started: Connecting the Home
- #Natural_Language
- #Vision and #Face_Recognition
- Messenger Bot
- Voice and #Speech_Recognition
- Facebook Engineering Environment
—------
Vision and Face Recognition:
About one-third of the human #brain is dedicated to vision, and there are many important #AI problems related to understanding what is happening in images and videos. These problems include #tracking (eg is Max awake and moving around in her crib?), #object_recognition (eg is that Beast or a rug in that room?), and face recognition (eg who is at the door?).
Face recognition is a particularly difficult version of object recognition because most people look relatively similar compared to telling apart two random objects — for example, a sandwich and a house. But Facebook has gotten very good at face recognition for identifying when your friends are in your photos. That expertise is also useful when your friends are at your door and your AI needs to determine whether to let them in.
To do this, I installed a few cameras at my door that can capture images from all angles. AI systems today cannot identify people from the back of their heads, so having a few angles ensures we see the person's face. I built a simple server that continuously watches the cameras and runs a two step process: first, it runs face detection to see if any person has come into view, and second, if it finds a face, then it runs face recognition to identify who the person is. Once it identifies the person, it checks a list to confirm I'm expecting that person, and if I am then it will let them in and tell me they're here.
This type of visual AI system is useful for a number of things, including knowing when Max is awake so it can start playing music or a Mandarin lesson, or solving the context problem of knowing which room in the house we're in so the AI can correctly respond to context-free requests like "turn the lights on" without providing a location. Like most aspects of this AI, vision is most useful when it informs a broader model of the world, connected with other abilities like knowing who your friends are and how to open the door when they're here. The more context the system has, the smarter is gets overall.
#mark_zuckerberg #smart_home
زاکربرگ از انگیزه ی خود برای این کار و گام های انجام کارش مینویسد:
https://www.facebook.com/notes/mark-zuckerberg/building-jarvis/10154361492931634/
چالش شخصی من برای سال 2016 ساخت یک هوش مصنوعی ساده برای خانه ام بوده - مثل جارویس در فیلم مرد آهنین...
Building Jarvis:
- Getting Started: Connecting the Home
- #Natural_Language
- #Vision and #Face_Recognition
- Messenger Bot
- Voice and #Speech_Recognition
- Facebook Engineering Environment
—------
Vision and Face Recognition:
About one-third of the human #brain is dedicated to vision, and there are many important #AI problems related to understanding what is happening in images and videos. These problems include #tracking (eg is Max awake and moving around in her crib?), #object_recognition (eg is that Beast or a rug in that room?), and face recognition (eg who is at the door?).
Face recognition is a particularly difficult version of object recognition because most people look relatively similar compared to telling apart two random objects — for example, a sandwich and a house. But Facebook has gotten very good at face recognition for identifying when your friends are in your photos. That expertise is also useful when your friends are at your door and your AI needs to determine whether to let them in.
To do this, I installed a few cameras at my door that can capture images from all angles. AI systems today cannot identify people from the back of their heads, so having a few angles ensures we see the person's face. I built a simple server that continuously watches the cameras and runs a two step process: first, it runs face detection to see if any person has come into view, and second, if it finds a face, then it runs face recognition to identify who the person is. Once it identifies the person, it checks a list to confirm I'm expecting that person, and if I am then it will let them in and tell me they're here.
This type of visual AI system is useful for a number of things, including knowing when Max is awake so it can start playing music or a Mandarin lesson, or solving the context problem of knowing which room in the house we're in so the AI can correctly respond to context-free requests like "turn the lights on" without providing a location. Like most aspects of this AI, vision is most useful when it informs a broader model of the world, connected with other abilities like knowing who your friends are and how to open the door when they're here. The more context the system has, the smarter is gets overall.
#mark_zuckerberg #smart_home
Forwarded from Mohammad H. Sattarian
This media is not supported in your browser
VIEW IN TELEGRAM
Mark Zuckerberg's presentation of his Jarvis AI
Forwarded from Mohammad H. Sattarian
This media is not supported in your browser
VIEW IN TELEGRAM
Priscilla Chan's presentation of Jarvis AI
Tensorflow(@CVision)
#Winter #Seminar Series Advanced Topics in Computer Science and Engineering Sharif University of Technology / 28-29 December 2016 دومین #سمینار #زمستانی مباحثی پیشرفته در علوم و مهندسی کامپیوتر / 8 و 9 دی ماه http://wss.ce.sharif.edu/ لینک ثبت نام: http…
برنامه زمانی سخنرانیها:
http://wss.ce.sharif.edu/#schedule
http://wss.ce.sharif.edu/#schedule
مقایسه ی فریم ورکهای یادگیری ژرف:
DL4J vs. Torch vs. Theano vs. Caffe vs. TensorFlow:
https://deeplearning4j.org/compare-dl4j-torch7-pylearn
Content:
#Theano & Ecosystem
#Torch
#TensorFlow
#Caffe
#CNTK
#DSSTNE
#Keras
#Mxnet
#Paddle
Licensing
DL4J vs. Torch vs. Theano vs. Caffe vs. TensorFlow:
https://deeplearning4j.org/compare-dl4j-torch7-pylearn
Content:
#Theano & Ecosystem
#Torch
#TensorFlow
#Caffe
#CNTK
#DSSTNE
#Keras
#Mxnet
#Paddle
Licensing
Brain Simulator is currently being developed in C# with AI modules and architectures simulated on CUDA. We plan to make the project multi-platform (Windows, Linux, Mac, etc.), cloud-based, and cluster-based (multi-GPU/CPU).
http://www.goodai.com/brain-simulator
Brain Simulator introductory user tutorial:
https://youtu.be/4ghhVl_UJwk
demo1
https://youtu.be/froJfzmwj18
demo2:
https://youtu.be/0RZM6NNuEmc
http://www.goodai.com/brain-simulator
Brain Simulator introductory user tutorial:
https://youtu.be/4ghhVl_UJwk
demo1
https://youtu.be/froJfzmwj18
demo2:
https://youtu.be/0RZM6NNuEmc
YouTube
GoodAI Brain Simulator introductory tutorial
www.GoodAI.com This video offers an introduction to GoodAI Brain Simulator, a collaborative platform where researchers, developers, and tech companies can pr...
Forwarded from UT ACM
سخنرانى على اسلامى در حوزهی Deep Learning
شنبه ١١ دى، ساعت ۱۶ تا ۱۸
محل برگزارى: آمفىتئاتر دانشكدهی مهندسى برق و کامپیوتر دانشگاه تهران
شنبه ١١ دى، ساعت ۱۶ تا ۱۸
محل برگزارى: آمفىتئاتر دانشكدهی مهندسى برق و کامپیوتر دانشگاه تهران
Forwarded from Hossein
وویس سخنرانی دکتر علی اسلامی با موضوع :
Beyond Supervised Deep Learning
۸ دی، دانشگاه شریف 👇👇
Beyond Supervised Deep Learning
۸ دی، دانشگاه شریف 👇👇
#Installing #CPU and #GPU #TensorFlow on #Windows:
فیلم آموزش #نصب تنسرفلو بر روی #ویندوز
سازگار با ویندوز 10 و همچنین 7 و 8
زبان : انگلیسی
Installing CPU and GPU TensorFlow on Windows.mp4👇
فیلم آموزش #نصب تنسرفلو بر روی #ویندوز
سازگار با ویندوز 10 و همچنین 7 و 8
زبان : انگلیسی
Installing CPU and GPU TensorFlow on Windows.mp4👇
انسان در واقع اشیاء را بدون ناظر یاد میگیرد و بعد اینکه مثلا مدتی یک شی را دید و یاد گرفت، بلافاصله پس از اینکه نام آن شی را شنید برچسب آن را نیز یاد میگیرد.
در حال حاضر بهترین مدلهای بینایی ماشین که در سالهای اخیر، خصوصا بعد از الکسنت سال 2012 ارائه شده اند با ناظر هستند. خیلی خوب عمل میکنند اما به داده ی برچسب گذاری شده ی زیادی نیاز دارند.
اگر به نحوی بتوانیم از داده های بدون برچسب استفاده کنیم و مدل را آموزش دهیم، سپس در فاز کوتاهی با داده های اندک اشیائی که مدل یاد گرفته است را به صورت با ناظرآموزش دهیم تحول بزرگی در یادگیری مدل ها ایجاد خواهد شد. در این صورت میتوان به سادگی میلیون ها ساعت ویدیو را مثلا با استفاده از یوتیوب به مدل آموزش داد و پس از آموزش مدل، شروع به آموزش نام اشیاء یادگرفته شده به مدل پرداخت روندی که در انسان هم مشاهده میشود! در واقع کودک از بدو تولد اشیاء مختلف را میبیند و آن ها را یاد میگیرد اما با یک یا چند بارشنیدن نام آن به آن دسته یا شئی که قبلا فراگرفته نام اختصاص میدهد.
The Next Frontier in AI: Unsupervised Learning
#Yann_LeCun
Director of AI Research at Facebook, Professor of Computer Science, New York University
November 18, 2016
https://www.youtube.com/watch?v=IbjF5VjniVE
Abstract
The rapid progress of #AI in the last few years are largely the result of advances in #deep_learning and neural nets, combined with the availability of large datasets and fast GPUs. We now have systems that can #recognize images with an accuracy that rivals that of humans. This will lead to revolutions in several domains such as autonomous transportation and #medical #image understanding. But all of these systems currently use #supervised learning in which the machine is trained with inputs labeled by humans. The challenge of the next several years is to let machines learn from raw, #unlabeled_data, such as #video or #text. This is known as #unsupervised learning. AI systems today do not possess "common sense", which humans and animals acquire by observing the world, acting in it, and understanding the physical constraints of it. Some of us see unsupervised learning as the key towards machines with common sense. Approaches to unsupervised learning will be reviewed. This presentation assumes some familiarity with the basic concepts of deep learning.
در حال حاضر بهترین مدلهای بینایی ماشین که در سالهای اخیر، خصوصا بعد از الکسنت سال 2012 ارائه شده اند با ناظر هستند. خیلی خوب عمل میکنند اما به داده ی برچسب گذاری شده ی زیادی نیاز دارند.
اگر به نحوی بتوانیم از داده های بدون برچسب استفاده کنیم و مدل را آموزش دهیم، سپس در فاز کوتاهی با داده های اندک اشیائی که مدل یاد گرفته است را به صورت با ناظرآموزش دهیم تحول بزرگی در یادگیری مدل ها ایجاد خواهد شد. در این صورت میتوان به سادگی میلیون ها ساعت ویدیو را مثلا با استفاده از یوتیوب به مدل آموزش داد و پس از آموزش مدل، شروع به آموزش نام اشیاء یادگرفته شده به مدل پرداخت روندی که در انسان هم مشاهده میشود! در واقع کودک از بدو تولد اشیاء مختلف را میبیند و آن ها را یاد میگیرد اما با یک یا چند بارشنیدن نام آن به آن دسته یا شئی که قبلا فراگرفته نام اختصاص میدهد.
The Next Frontier in AI: Unsupervised Learning
#Yann_LeCun
Director of AI Research at Facebook, Professor of Computer Science, New York University
November 18, 2016
https://www.youtube.com/watch?v=IbjF5VjniVE
Abstract
The rapid progress of #AI in the last few years are largely the result of advances in #deep_learning and neural nets, combined with the availability of large datasets and fast GPUs. We now have systems that can #recognize images with an accuracy that rivals that of humans. This will lead to revolutions in several domains such as autonomous transportation and #medical #image understanding. But all of these systems currently use #supervised learning in which the machine is trained with inputs labeled by humans. The challenge of the next several years is to let machines learn from raw, #unlabeled_data, such as #video or #text. This is known as #unsupervised learning. AI systems today do not possess "common sense", which humans and animals acquire by observing the world, acting in it, and understanding the physical constraints of it. Some of us see unsupervised learning as the key towards machines with common sense. Approaches to unsupervised learning will be reviewed. This presentation assumes some familiarity with the basic concepts of deep learning.
YouTube
RI Seminar: Yann LeCun : The Next Frontier in AI: Unsupervised Learning
Yann LeCun
Director of AI Research at Facebook, Professor of Computer Science, New York University
November 18, 2016
Abstract
The rapid progress of AI in the last few years are largely the result of advances in deep learning and neural nets, combined with…
Director of AI Research at Facebook, Professor of Computer Science, New York University
November 18, 2016
Abstract
The rapid progress of AI in the last few years are largely the result of advances in deep learning and neural nets, combined with…
Tensorflow(@CVision)
انسان در واقع اشیاء را بدون ناظر یاد میگیرد و بعد اینکه مثلا مدتی یک شی را دید و یاد گرفت، بلافاصله پس از اینکه نام آن شی را شنید برچسب آن را نیز یاد میگیرد. در حال حاضر بهترین مدلهای بینایی ماشین که در سالهای اخیر، خصوصا بعد از الکسنت سال 2012 ارائه شده…
یان لیکان در این سخنرانی
شبکه های رقابتی مولد
یا
Generative Adversarial Networks
را مهم ترین ایده در 20 سال گذشته برای یادگیری ماشین بیان کرده است.
روشی که مدلها را قادر به یادگیری بدون ناظر میکند.
The major advancements in Deep Learning in 2016
🔗https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/
Generative Adversarial Nets
https://arxiv.org/pdf/1406.2661v1.pdf
این روش برای مسائل با تعداد کم و ناکافی داده ی با برچسب نیز مناسب است.
#autoencoder #unsupervised #unsupervised_learning #Generative #Generative_Models
شبکه های رقابتی مولد
یا
Generative Adversarial Networks
را مهم ترین ایده در 20 سال گذشته برای یادگیری ماشین بیان کرده است.
روشی که مدلها را قادر به یادگیری بدون ناظر میکند.
The major advancements in Deep Learning in 2016
🔗https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/
Generative Adversarial Nets
https://arxiv.org/pdf/1406.2661v1.pdf
این روش برای مسائل با تعداد کم و ناکافی داده ی با برچسب نیز مناسب است.
#autoencoder #unsupervised #unsupervised_learning #Generative #Generative_Models
Tryolabs
The major advancements in Deep Learning in 2016
✏️Title:
#Unsupervised #Representation Learning with #Deep #Convolutional #Generative #Adversarial Networks
✏️abstract:
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. Additionally, we use the learned features for novel tasks - demonstrating their applicability as general image representations.
🔗https://arxiv.org/pdf/1511.06434v2.pdf
"Under review as a conference paper at ICLR 2016"
#Unsupervised #Representation Learning with #Deep #Convolutional #Generative #Adversarial Networks
✏️abstract:
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. Additionally, we use the learned features for novel tasks - demonstrating their applicability as general image representations.
🔗https://arxiv.org/pdf/1511.06434v2.pdf
"Under review as a conference paper at ICLR 2016"