Анализ данных (Data analysis) – Telegram
Анализ данных (Data analysis)
46.9K subscribers
2.73K photos
311 videos
1 file
2.33K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Media is too big
VIEW IN TELEGRAM
🚀Релиз HY World 1.5 (WorldPlay)

Команда Tencent Hunyuan открыла исходный код HY World 1.5 (WorldPlay) - одного из самых продвинутых и фреймворков для интерактивного моделирования миров в реальном времени.

В версии 1.5 представлен WorldPlay - стриминговая video diffusion-модель, позволяющая создавать и исследовать интерактивные 3D-миры с долгосрочной геометрической согласованностью.

3D-миры можно создавать по тексту или изображениям, свободно перемещаться по ним, осматриваться и взаимодействовать с окружением, как в видеоигре.

Ключевые особенности:

- Реальное время
Генерация длинных видеопотоков со скоростью 24 FPS с высокой стабильностью сцен.

- Геометрическая согласованность
Используется механизм Reconstituted Context Memory, который динамически пересобирает контекст из предыдущих кадров и предотвращает деградацию памяти.

- Точное и устойчивое управление
Dual Action Representation обеспечивает корректную реакцию на ввод с клавиатуры и мыши.

- Широкие сценарии применения
Поддержка вида от первого и третьего лица, событий, управляемых промптом, и бесконечного расширения мира.

Проект полностью открыт.

Попробовать: https://3d.hunyuan.tencent.com/sceneTo3D?tab=worldplay
Проект Page: https://3d-models.hunyuan.tencent.com/world/
GitHub: https://github.com/Tencent-Hunyuan/HY-WorldPlay
Hugging Face: https://huggingface.co/tencent/HY-WorldPlay
Technical Report: https://3d-models.hunyuan.tencent.com/world/world1_5/HYWorld_1.5_Tech_Report.pdf

@data_analysis_ml
10👍5🔥4
🔥 На stepik вышел курс, который учит Создавать настоящие AI-сервисы, а не просто запускать скрипты?

Этот практический курс по Python и FastAPI покажет, как собрать полноценное приложение с ИИ, базой данных, автогенерацией контента и Telegram-ботом.

Ты пройдёшь путь от первого HTTP-запроса до рабочего сервиса, который сам генерирует текст через ИИ, сохраняет данные, отправляет результаты по расписанию и отвечает пользователям.

Никакой теории ради теории - только практические шаги, из которых рождается реальный продукт.

🎁 48 часов действует скидка в 40% процентов

👉 Начать учиться на Stepik
4👍3🔥2
📌 Новое исследование показывает: AI-статьи, финансируемые Big Tech, получают больше цитирований, чаще цитируют “своих” и сильнее ориентируются на свежие результаты.

Ключевые факты:

🔹 Всего около 10% статей имеют финансирование Big Tech, но ~12% из них попадают в число наиболее цитируемых.

🔹 Анализировали ~50K работ из топ-конференций, классифицируя их по благодарностям: Big Tech, другое финансирование или без него.

🔹 За 20 лет доля Big Tech выросла с примерно 0 до ~10% всех топ-публикаций.

🔹 Чтобы оценить влияние, сравнили “сколько статьи публикуют” vs “сколько их цитируют”:
• статьи Big Tech цитируются больше, чем можно ожидать по их доле;
• нерефинансируемые - меньше.

🔹 Каждая группа чаще цитирует “своих”, но Big Tech особенно склонна ссылаться на другие Big Tech работы.

🔹 По возрасту ссылок — Big Tech публикует статьи, которые сильнее ориентированы на совсем свежие исследования, а значит такие деньги частично формируют, какие идеи и старые результаты AI-сообщество не забывает и к чему возвращается.

arxiv.org/abs/2512.05714
4🔥4🥰21
🎤 xAI запустила Grok Voice Agent API

xAI представила Grok Voice Agent API - интерфейс для создания голосовых AI-агентов с живым диалогом в реальном времени.

Ключевые возможности:
- Двусторонний голосовой диалог с минимальной задержкой
- Поддержка десятков языков и естественной интонации
- Вызов инструментов, поиск в интернете, выполнение задач во время разговора
- Интеграция с SIP-провайдерами и голосовыми платформами

Производительность:
- Время до первой реплики - менее 1 секунды
- Высокие результаты в аудио-бенчмарках
- Простая тарификация - оплата за минуты соединения

Где используется:
- Голосовой Grok в мобильных приложениях
- Интеграции в автомобилях Tesla
- Поддержка продакшен-агентов для бизнеса

https://x.ai/news/grok-voice-agent-api

@data_analysis_ml
7🔥3👍2
🚀 VoxCPM 1.5 - новый уровень реалистичной генерации речи! 🎧

Модель получила заметные улучшения, которые делают синтез голоса более естественным и технологически гибким.

Ключевые изменения:

🔊 Hi-Fi звук 44.1 kHz — качество приближено к студийному, вместо прежних 16 kHz
В 2 раза эффективнее — 1 секунда аудио теперь кодируется в 6.25 токена вместо 12.5
🛠 Расширенные возможности настройки — новые скрипты для LoRA и полного fine-tuning позволяют адаптировать модель под голосовые проекты
📈 Стабильность на длинных аудио — меньше артефактов и провалов при генерации

Ссылки для изучения и тестов:
HuggingFace: huggingface.co/openbmb/VoxCPM1.5
GitHub: github.com/OpenBMB/VoxCPM

#VoxCPM #TTS #AI #OpenSource
7👍2🔥1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ GPT-5.2-Codex.

OpenAI представила GPT-5.2-Codex, которую называет самым продвинутым инструментом для реальной программной инженерии на сегодняшний день. Модель получила нативную поддержку сжатия контекста, улучшенную интеграцию с терминалом Windows и способность проводить глубокий рефакторинг крупных репозиториев без потери логической нити.

Ключевой апдейт коснулся сферы безопасности - Codex резко прибавил способностей в анализе защищенности кода. Модель уже доступна платным пользователям ChatGPT, а API будет открыт в ближайшие недели.
openai.com

✔️ xAI представила Grok Voice Agent API.

Компания Илона Маска открыла публичный доступ к Grok Voice Agent API — нативному интерфейсу speech-to-speech для создания голосовых ассистентов. Решение построено на полностью собственной архитектуре, что позволило достичь задержки ответа менее 1 секунды.

API поддерживает вызов внешних инструментов, веб-поиск, прямую интеграцию с телефонией через SIP и понимает более 100 языков. В бенчмарке Big Bench Audio модель заняла 1 место с точностью 92,3%, опередив Gemini 2.5 Flash и GPT Realtime.

Главной фишкой стала ценовая политика: единый тариф составляет $0.05 за минуту. Это значительно дешевле, чем у OpenAI и ElevenLabs.
x.ai

✔️ VS Code получил поддержку стандарта Agent Skills.

В VS Code Insiders появилась поддержка Agent Skills - открытого протокола, разработанного Anthropic. Технология позволяет упаковывать инструкции, скрипты и вспомогательные ресурсы в модули, которыми можно пользоваться в разных ИИ-инструментах.

Главное отличие Agent Skills от привычных кастомных инструкций в функциональности: это не текстовые гайдлайны по стилю кода, а полноценные наборы инструментов для автоматизации задач, которые подгружаются в контекст модели динамически и только при необходимости.

Стандарт дает кросс-платформенность: созданный один раз скилл будет работать одинаково как в интерфейсе редактора, так и в CLI-агентах.
code.visualstudio.com

✔️ Google выпустила T5Gemma 2.

T5Gemma 2 получила серьезные архитектурные изменения по сравнению с первой версией. Чтобы снизить потребление памяти, инженеры внедрили tied word embeddings для энкодера и декодера, а также объединили механизмы self-attention и cross-attention в единый слой. Модели доступны в компактных конфигурациях на 270M, 1B и 4B параметров.

Новинка поддерживает контекстное окно до 128 тыс. токенов и умеет обрабатывать не только текст на 140 языках, но и изображения. В бенчмарках T5Gemma 2 обошла базовую Gemma 3 в задачах на длинный контекст, кодинг и мультимодальное понимание. Модели доступны на Hugging Face и Kaggle для исследовательских целей.
blog.google

✔️ ИИ-подразделение Марка Цукерберга открыло аудио-визуальный энкодер PE-AV.

Perception Encoder Audiovisual (PE-AV) - техническое ядро, лежащее в основе SAM Audio. Это мультимодальная модель, которая объединяет аудио, видео и текст в единое пространство эмбеддингов.

PE-AV умеет извлекать векторы признаков из аудио или видеокадров и формировать совместные аудиовизуальные представления. Это повышает точность в задачах кросс-модального поиска, детекции звуков и глубокого понимания сцен, где важен синхронный контекст изображения и звука.

В открытом доступе - 6 чекпоинтов модели разного размера (от Small до Large) с вариациями по количеству обрабатываемых кадров. Код опубликован на GitHub, а веса - на Hugging Face.
huggingface.co


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62🔥1
⚡️ Shannon - полностью автономный AI-хакер для поиска реальных уязвимостей в веб-приложениях

Shannon - это автономная система для offensive security, которая сама ищет, воспроизводит и документирует реальные эксплойты в веб-приложениях без подсказок и ручного вмешательства.

Модель показала 96.15% успешности на XBOW Benchmark (hint-free, source-aware), что выводит ее на уровень практического pentest, а не просто статического анализа.

Что умеет Shannon
- Полностью автономная работа без ручного управления
- Поиск реальных эксплойтов, а не теоретических уязвимостей
- Генерация pentester-grade отчетов с воспроизводимыми шагами атаки
- Покрытие критических уязвимостей OWASP Top
- Code-aware динамическое тестирование с учетом исходного кода
- Использование набора интегрированных security-инструментов
- Параллельное выполнение атак для ускорения результатов

Почему это важно
Большинство сканеров находят потенциальные проблемы. Shannon ищет именно эксплуатируемые уязвимости и подтверждает их рабочими атаками, снижая false positives и экономя время команд безопасности.

Практическое применение
- Автоматизированный pentest в CI/CD
- Проверка безопасности перед релизом
- Red Team инструментарий
- Continuous security для веб-продуктов

Shannon - пример того, как автономные AI-агенты начинают реально менять рынок offensive security, переходя от подсказок к самостоятельному поиску и эксплуатации уязвимостей.

🖥 GitHub: https://github.com/KeygraphHQ/shannon
Please open Telegram to view this post
VIEW IN TELEGRAM
👍136🔥2
🔥 2025 - год, когда LLM действительно изменились. Коротко и по делу, по мотивам поста Андрея Карпты

2025 оказался неожиданно сильным годом для LLM. Не просто улучшения метрик, а реальные сдвиги в том, как модели обучаются, как ими пользуются и как вообще стоит думать об их «интеллекте».

Главное за 2025 по мнению Карпты:
1. RLVR — Reinforcement Learning from Verifiable Rewards
До 2025 стандартный стек выглядел так: pretraining → SFT → RLHF. В 2025 к этому стеку добавился новый, ключевой этап- RLVR.

Вместо субъективной человеческой оценки модель обучают на автоматически проверяемых наградах: задачи по математике, коду, логике. В результате LLM сама находит стратегии рассуждения - дробит задачи, проверяет гипотезы, возвращается назад.

Важно не «что мы показали модели», а то, что она сама нашла рабочие способы думать. Этот этап оказался невероятно эффективным по соотношению capability к стоимости, из-за чего значительная часть вычислений ушла не в pretraining, а в длинные RL-прогоны.

Побочный эффект — появился новый регулятор мощности: test-time compute. Больше «времени на размышление» — выше качество. o1 показал идею, o3 в начале 2025 сделал перелом — разницу стало чувствовать интуитивно.

2. «Призраки, а не животные» и рваный интеллект
В 2025 индустрия наконец осознала форму LLM-интеллекта. Мы не «растим животных». Мы «призываем призраков».

LLM оптимизированы не под выживание и социальные группы, а под имитацию текста, получение наград в формальных задачах и апвоты. Поэтому интеллект получается рваным:
- гениальны в одном
- наивны и уязвимы в другом

RLVR усиливает этот эффект - модели становятся сверхсильными в верифицируемых доменах и странно слабыми вне их. Отсюда и потеря доверия к бенчмаркам: они почти всегда верифицируемы, а значит легко «обрастают jagged-улучшениями». Обучение на тесте стало искусством.

Можно побить все бенчмарки и всё ещё быть далеко от AGI.

3. Cursor и новый слой LLM-приложений
Cursor показал, что появился новый класс LLM-продуктов - «Cursor для X».

Это не просто интерфейс к модели, а слой, который:
- делает context engineering
- оркестрирует множество LLM-вызовов в DAG
- балансирует стоимость и качество
- дает специализированный UI
- вводит «ползунок автономности»

Вероятный сценарий: LLM-лабы делают «универсального студента», а приложения превращают их в специалистов — добавляя данные, инструменты, сенсоры и обратную связь.

4. Claude Code - AI, который живет на твоем компьютере
Claude Code стал первым убедительным агентом, который работает локально, в твоем окружении, с твоими файлами и контекстом.

Это важный сдвиг. Не облачные контейнеры и абстрактные агенты, а «дух», который живет рядом с разработчиком. В мире рваных возможностей это оказалось гораздо полезнее, чем агентные своры в облаке.

Форм-фактор CLI сделал этот сдвиг особенно наглядным: AI - это уже не сайт, а постоянный спутник.

5. Vibe coding
2025 - год, когда стало возможно писать сложные программы, почти забыв, что код вообще существует.

Vibe coding демократизирует программирование:
- обычные люди могут создавать софт
- профессионалы пишут больше, быстрее и смелее
- код стал дешевым, одноразовым, экспериментальным

Можно написать программу ради одной проверки, одного бага, одной идеи - и выкинуть. Это изменит и софт, и профессии.

6. Nano banana и будущее интерфейсов
Чат - это терминал 80-х. Удобно для машины, плохо для человека.

Люди предпочитают визуальное мышление: схемы, изображения, анимации, интерфейсы. LLM должны общаться с нами в этих форматах. Gemini Nano banana - первый намек на настоящий LLM-GUI, где текст, изображения и знания слиты в одной модели.

Это не просто генерация картинок — это новый пользовательский слой для интеллекта.


2025 показал: LLM - это новый тип интеллекта. Он одновременно умнее и глупее, чем ожидали. Он невероятно полезен, но мы реализовали, возможно, даже не 10% его потенциала.

Прогресс будет быстрым. Работы впереди — море. Поле идей - открыто.

https://x.com/karpathy/status/2002118205729562949

@data_analysis_ml
19👍10🔥6
⚡️ Anthropic выпустили BLOOM - одно из самых важных исследований про безопасность ИИ за последнее время.

Если коротко:
BLOOM это попытка встроить безопасность и контроль в саму основу ИИ, а не латать проблемы постфактум.

Вот суть простыми словами.

1) Безопасность не фильтр, а часть архитектуры

Сегодня безопасность ИИ часто выглядит так:
- модель обучили
- потом добавили ограничения и фильтры

Anthropic говорит прямо:
так не работает в долгую.

В BLOOM безопасность должна:
- закладываться на этапе обучения
- быть частью внутренней структуры модели
- масштабироваться вместе с ростом возможностей ИИ

2) Надёжность важнее «умных ответов»

Модель должна:
- не только отвечать
- но и понимать, когда она не уверена
- уметь корректно отказывать
- не галлюцинировать в критических ситуациях

Проще говоря:
лучше честное «я не знаю», чем уверенная ошибка.

3) Контроль остаётся у людей

BLOOM подчёркивает:
- пользователи должны понимать, как ИИ принимает решения
- должно быть ясно, где проходят границы ответственности
- контроль и управление не опция, а обязательное требование

ИИ не должен быть «чёрным ящиком», который невозможно остановить или скорректировать.

4) Оценка рисков должна происходить системно, а не реактивно


Anthropic предлагает смотреть на риски ИИ:
- заранее
- на нескольких уровнях сразу
- техническом
- социальном
- экономическом

Не «исправлять, когда что-то сломалось»,
а предсказывать, где и почему может сломаться.

BLOOM - это не про очередную модель и не про рост бенчмарков. Это про смену подхода:
- от «быстрее и мощнее»
- к «надёжнее, предсказуемее и управляемее»

Главная мысль:
если ИИ становится мощнее человека, безопасность должна расти быстрее, чем его интеллект.

И именно этим Anthropic предлагает заниматься уже сейчас.

https://www.anthropic.com/research/bloom
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥87🍌2🤣1💔1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Китайские учёные представили сверхбыстрый аналоговый чип до 1000× быстрее топовых цифровых процессоров.

Чип решает сложные математические задачи для ИИ и научных вычислений и в тестах обходит даже GPU NVIDIA.

Ключевая идея не ускорять цифру, а уйти от неё:
аналоговые вычисления позволяют считать напрямую, без дискретных шагов, что даёт резкий прирост скорости и энергоэффективности.

Это может изменить правила игры:
- ускорение обучения и инференса ИИ
- прорыв в научном моделировании
- новые архитектуры, выходящие за пределы GPU/TPU

Гонка вычислительных мощностей входит в следующую фазу.
👍34🔥156🥴2
⚡️ Итоги 2025 в Machine Learning: фиксация ключевых сдвигов индустрии

24 декабря в Telegram канале South HUB состоится онлайн-дискуссия, посвящённая анализу ключевых технологических, продуктовых и управленческих событий 2025 года в машинном обучении. Участники обсудят, какие решения и подходы действительно повлияли на практику ML и data-проектов, а также с какими выводами и ожиданиями индустрия заходит в 2026 год.

В дискуссии участвуют члены программного комитета Snow BASE:
Александр Толмачёв, Chief Data Officer, ex-Ozon — ML и измеримость бизнес-эффекта
Андрей Венжега, Head of Search & Recommendations, Avito — поиск и рекомендательные системы
Павел Пархоменко, руководитель ML, AI и логистических сервисов, Яндекс.Лавка — масштабирование ML в логистике
Андрей Кузнецов, Head of ML, Positive Technologies — устойчивость ML-систем в продакшене

🗓 24 декабря, 13:00–14:00 (МСК)
📍 Telegram канал South HUB
👍43🌚2
Привет всем, в особенности тем, кто работает с медиапланированием ТВ-рекламы

Вы наверняка знаете, что ролики должны идти в конкретное время и с правильной частотой, чтобы их увидела нужная целевая аудитория. Мы в Авито понимаем, что это сложно, потому что сами регулярно занимаемся таким планированием. Но недавно мы собрали новый подход и решили о нём рассказать, чтобы вы тоже могли им воспользоваться.

Сняли новый фильм из цикла «Диванная аналитика», в котором Андрей Корнеев, аналитик в медиамаркетинге, простыми словами объясняет:
— Как измерить эффект от ТВ-рекламы.
— Почему наши старые методы работали неидеально.
— Как построить систему, которая сама подскажет, как лучше разместить рекламу.

Посмотрите, чтобы прокачать свой аналитический mindset:
🔼 YouTube
🔼 Rutube
🔼 VK Видео

Больше лайфхаков, кейсов, методик и вакансий — в нашем телеграм-канале «Коммуналка аналитиков». Подписывайтесь — будет полезно!
Please open Telegram to view this post
VIEW IN TELEGRAM
2😁2
✔️ Acontext- контекст как инфраструктура для AI-приложений

Acontext - это open-source проект, который решает одну из самых болезненных проблем AI-систем: управление контекстом, памятью и состоянием между запросами.

Проект создан командой MemoDB и нацелен на разработчиков, которые строят:
- LLM-приложения
- агентные системы
- RAG-пайплайны
- long-running AI-процессы

Что делает Acontext:

- Выносит контекст из prompt’ов в отдельный слой
- Даёт структурированную «память» вместо хаотичного текста
- Позволяет хранить, обновлять и переиспользовать контекст между вызовами модели
- Упрощает построение stateful AI-приложений
- Снижает токен-оверход и стоимость inference

Ключевая идея:
контекст — это не строка, а управляемый объект.

Почему это важно:
- prompt’ы перестают разрастаться
- поведение модели становится стабильнее
- проще отлаживать и масштабировать систему
- легче добавлять новые источники знаний

Acontext особенно полезен для:
- AI-агентов
- чатов с памятью
- multi-step reasoning
- инструментальных LLM-пайплайнов

Если ты строишь что-то сложнее одного запроса к модели — без слоя управления контекстом дальше будет только боль.

Репозиторий:
https://github.com/memodb-io/Acontext
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍5🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
MiniMax M2.1 официальный релиз 🚀

MiniMax M2.1 - это модель, созданная под реальные задачи разработки и AI-native команды. Подходит как для vibe-билдов и быстрых прототипов, так и для серьезных продакшен-воркфлоу.

Что важно
- SOTA open-source coding и agent модель
- 10B активных параметров
- Оптимизирована под агентные сценарии, инструменты и сложные пайплайны

Результаты в бенчмарках
- 72.5% на SWE-multilingual
- 88.6% на VIBE-bench - новом open-source бенчмарке
- Обходит ведущие закрытые модели, включая Gemini 3 Pro и Claude 4.5 Sonnet

- Open-source модель реально конкурирует с топовыми закрытыми решениями
- Сделана не только для чата, а для агентных систем и автоматизации
- Хорошо подходит для production-кодинга и AI-инфраструктуры

https://www.minimax.io/news/minimax-m21
🔥135👍5🤣1
🚀 28 готовых AI-проектов, которые можно реально использовать в проде или для портфолио.

Что внутри:

Проекты машинного обучения
→ Прогноз цен на жилье (Airbnb price prediction)
→ Калькулятор стоимости авиабилетов
→ Трекер успеваемости студентов

AI для здравоохранения
→ Обнаружение заболеваний грудной клетки
→ Прогноз сердечных заболеваний
→ Анализатор риска диабета

Генеративные AI-приложения
→ Живой чатбот на базе Gemini
→ Рабочий медицинский ассистент
→ Инструмент анализа документов

Проекты Computer Vision
→ Система отслеживания руки
→ Приложение для распознавания медикаментов
→ Реализации на OpenCV

Дашборды для анализа данных
→ E-commerce insights
→ Аналитика ресторанов
→ Трекер производительности игроков в крикете

И 10 продвинутых проектов, которые скоро появятся:
→ Детекция дипфейков
→ Классификация опухолей мозга
→ Система оповещения о сонливости водителя

Это не просто файлы с кодом.
Это end-to-end, рабочие приложения, которые можно запускать, тестировать и использовать.

💻 Репозиторий: https://github.com/KalyanM45/AI-Project-Gallery
11👍3🔥1
⚡️ CodeCut: автогенерация описаний для изображений прямо из PDF

Теперь можно конвертировать документ, пройтись по всем картинкам - и получить текстовые аннотации, которые модель создаёт автоматически.

Это удобно для:
- анализа больших отчетов, презентаций, научных статей
- автоматического извлечения подписей и описаний графиков
- подготовки данных для RAG/LLM-пайплайнов
- улучшения доступности контента

На примере: CodeCut извлекает изображение графика и сразу генерирует его описание — с упоминанием распределений, метрик, масштабов и ключевых наблюдений.

Минимальный код выглядит так:


from docling.document_converter import DocumentConverter

converter = DocumentConverter(...)
doc = converter.convert("report.pdf").document

for pic in doc.pictures:
print(pic.annotations[0].text)
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍6🔥2