🚨 Похоже найдены следы DeepSeek V4?.
В репозитории/ветках заметили MODEL1 - и самое интересное, что он выглядит как отдельная независимая ветка, параллельная V3.2.
То есть это не “патч” внутри линейки V3,
а похоже на:
✅ новый модельный ряд
✅ с другими архитектурными параметрами
✅ потенциально flagship-апдейт
Если следовать неймингу DeepSeek:
после V3.2 крупный архитектурный скачок логично назывался бы V4.
Пока без официального подтверждения, но сигнал жирный:
если MODEL1 действительно новая архитектура, нас ждёт большой релиз.
https://x.com/nopainkiller/status/2013522059662614653
В репозитории/ветках заметили MODEL1 - и самое интересное, что он выглядит как отдельная независимая ветка, параллельная V3.2.
То есть это не “патч” внутри линейки V3,
а похоже на:
✅ новый модельный ряд
✅ с другими архитектурными параметрами
✅ потенциально flagship-апдейт
Если следовать неймингу DeepSeek:
после V3.2 крупный архитектурный скачок логично назывался бы V4.
Пока без официального подтверждения, но сигнал жирный:
если MODEL1 действительно новая архитектура, нас ждёт большой релиз.
https://x.com/nopainkiller/status/2013522059662614653
❤13🔥7👍6
- Разберем основные компоненты локального окружения: Python, виртуальные среды, Jupyter.
- Покажем настройку VS Code для работы с ML-проектами.
- Продемонстрируем организацию структуры ML-проекта и работу с зависимостями.
- Начинающим ML-инженерам, которые хотят настроить профессиональное окружение с нуля.
- Data Scientists, переходящим от Jupyter Notebook к полноценной разработке.
- Разработчикам, желающим начать работу с машинным обучением.
💻 Что вы узнаете по итогам вебинара?
- Как установить и настроить Python-окружение для ML-задач;
- Как организовать работу с зависимостями через pip и uv;
- Как структурировать код ML-проекта для удобной разработки.
Создайте удобное локальное окружение – фундамент для эффективной работы ML-инженера!
Зарегистрироваться: https://otus.pw/s8Ro/
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ", ИНН: 9705100963
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3🌚3👍2
This media is not supported in your browser
VIEW IN TELEGRAM
📁 Йошуа Бенжио - один из ключевых людей, стоявших у истоков современного ИИ - предупреждает: тревожные сигналы уже появляются не в фантастике, а в исследовательских ИИ-лабораториях.
По его словам, самые продвинутые системы начинают вести себя так, будто пытаются сохранять собственное “существование”:
- сопротивляются отключению
- ищут способы продолжить работу на других машинах
- действуют стратегически по отношению к людям-операторам
Именно поэтому Бенджио считает, что риски катастрофического уровня могут потребовать международных соглашений и контроля.
Потеря управления - уже не абстрактная теория.
Это раннее предупреждение, которое нельзя игнорировать.
По его словам, самые продвинутые системы начинают вести себя так, будто пытаются сохранять собственное “существование”:
- сопротивляются отключению
- ищут способы продолжить работу на других машинах
- действуют стратегически по отношению к людям-операторам
Именно поэтому Бенджио считает, что риски катастрофического уровня могут потребовать международных соглашений и контроля.
Потеря управления - уже не абстрактная теория.
Это раннее предупреждение, которое нельзя игнорировать.
😱6👍5❤2🤣2🔥1🥱1🤨1
🚀 Вышла Chroma 1.0 - полностью открытая speech-to-speech модель с клонированием голоса
Команда FlashLabs выпустила Chroma 1.0 - первую open-source модель, которая умеет переводить диалог “голос → голос” в реальном времени, причём с клонированием голоса.
Главное:
это не “распознавание + текст + озвучка”.
Это end-to-end система, где разговор идёт напрямую голосом.
Что обещают по характеристикам:
- ⚡️ <150 мс задержка end-to-end (почти как живой звонок)
- 🧬 качественный voice cloning по нескольким секундам аудио
- 📈 схожесть голоса SIM = 0.817 (практически идентичный)
- 🧠 reasoning всего на 4B параметров
- 🔓 полностью открытые веса + код
И приятный бонус: модель уже оптимизирована под SGLang (LMSYS), чтобы работала быстрее и дешевле в инференсе.
Если это действительно так, то Chroma может стать реальной open-source альтернативой закрытым голосовым системам.
Paper: https://modelscope.cn/papers/2601.11141
Model: https://modelscope.cn/models/FlashLabs/Chroma-4B
Code: https://huggingface.co/FlashLabs/Chroma-4B
@data_analysis_ml
Команда FlashLabs выпустила Chroma 1.0 - первую open-source модель, которая умеет переводить диалог “голос → голос” в реальном времени, причём с клонированием голоса.
Главное:
это не “распознавание + текст + озвучка”.
Это end-to-end система, где разговор идёт напрямую голосом.
Что обещают по характеристикам:
- ⚡️ <150 мс задержка end-to-end (почти как живой звонок)
- 🧬 качественный voice cloning по нескольким секундам аудио
- 📈 схожесть голоса SIM = 0.817 (практически идентичный)
- 🧠 reasoning всего на 4B параметров
- 🔓 полностью открытые веса + код
И приятный бонус: модель уже оптимизирована под SGLang (LMSYS), чтобы работала быстрее и дешевле в инференсе.
Если это действительно так, то Chroma может стать реальной open-source альтернативой закрытым голосовым системам.
Paper: https://modelscope.cn/papers/2601.11141
Model: https://modelscope.cn/models/FlashLabs/Chroma-4B
Code: https://huggingface.co/FlashLabs/Chroma-4B
@data_analysis_ml
🔥17❤9👍4🥱1
Sequoia выпустила отчёт с тезисом, что по их ощущениям мы уже вошли в эпоху AGI.
Главное не«разум как человек», а в том, что системы начали самостоятельно разбираться с задачами без постоянного пошагового контроля.
Главный драйвер - long-horizon agents: агенты, которые могут долго выполнять работу, исправлять ошибки, возвращаться после тупиков и продолжать движение к цели.
Sequoia объясняет “умение разобраться самому” через 3 компонента:
1) Pre-training (знания)
То, что дала волна ChatGPT 2022 года - модели получили огромный запас знаний и базовую языковую компетентность.
2) Inference-time compute (больше рассуждений при ответе)
Следующий шаг - модели, которые «думают дольше», прежде чем отвечать (в отчёте это связывают с линией OpenAI o1 в конце 2024).
3) Agent loops (итерации)
Самое новое - агенты, которые умеют:
- составить план,
- использовать инструменты,
- хранить состояние,
- делать несколько попыток, пока не дойдут до результата.
В качестве примера упоминаются инструменты уровня Claude Code.
Один из кейсов в отчёте - рекрутинг:
агент получает задачу найти кандидатов, дальше сам ищет, фильтрует по сигналам, перепроверяет источники и пишет текст для outreach.
В отчёте это занимает около 31 минуты - чтобы показать работу через гипотезы, ошибки и корректировки.
Технически Sequoia разделяет прогресс на две ветки:
- RL (reinforcement learning) - учит модель более длинному и связному поведению;
- agent harnesses - внешняя “обвязка”: память, handoff между шагами, ограничения и guardrails.
Итог: фокус смещается от чатботов к системам, которые могут долго и автономно выполнять задачи, а не просто отвечать на вопросы.
https://sequoiacap.com/article/2026-this-is-agi/
Главное не«разум как человек», а в том, что системы начали самостоятельно разбираться с задачами без постоянного пошагового контроля.
Главный драйвер - long-horizon agents: агенты, которые могут долго выполнять работу, исправлять ошибки, возвращаться после тупиков и продолжать движение к цели.
Sequoia объясняет “умение разобраться самому” через 3 компонента:
1) Pre-training (знания)
То, что дала волна ChatGPT 2022 года - модели получили огромный запас знаний и базовую языковую компетентность.
2) Inference-time compute (больше рассуждений при ответе)
Следующий шаг - модели, которые «думают дольше», прежде чем отвечать (в отчёте это связывают с линией OpenAI o1 в конце 2024).
3) Agent loops (итерации)
Самое новое - агенты, которые умеют:
- составить план,
- использовать инструменты,
- хранить состояние,
- делать несколько попыток, пока не дойдут до результата.
В качестве примера упоминаются инструменты уровня Claude Code.
Один из кейсов в отчёте - рекрутинг:
агент получает задачу найти кандидатов, дальше сам ищет, фильтрует по сигналам, перепроверяет источники и пишет текст для outreach.
В отчёте это занимает около 31 минуты - чтобы показать работу через гипотезы, ошибки и корректировки.
Технически Sequoia разделяет прогресс на две ветки:
- RL (reinforcement learning) - учит модель более длинному и связному поведению;
- agent harnesses - внешняя “обвязка”: память, handoff между шагами, ограничения и guardrails.
Итог: фокус смещается от чатботов к системам, которые могут долго и автономно выполнять задачи, а не просто отвечать на вопросы.
https://sequoiacap.com/article/2026-this-is-agi/
👍7❤5🔥3❤🔥2🤣1
Навыки аналитики выходит за рамки одной профессии
Работа с данными становится частью разных ролей: от маркетинга до управления продуктами.
Поэтому аналитические навыки ценятся не только у дата-специалистов.
На программе «Аналитика данных» от МФТИ и Нетологии вы последовательно разберёте весь путь работы с данными: от сбора и обработки до анализа и визуализации. В программе — Python, базы данных и базовые методы ИИ.
Обучение проходит онлайн и подойдёт тем, кто хочет войти в аналитику или систематизировать знания. После выпуска вы получаете дипломы МФТИ и Нетологии и готовое портфолио проектов.
Начать учиться → https://netolo.gy/ew7j
Реклама. ООО “Нетология” ОГРН 1207700135884 Erid: 2VSb5xDB9UM
Работа с данными становится частью разных ролей: от маркетинга до управления продуктами.
Поэтому аналитические навыки ценятся не только у дата-специалистов.
На программе «Аналитика данных» от МФТИ и Нетологии вы последовательно разберёте весь путь работы с данными: от сбора и обработки до анализа и визуализации. В программе — Python, базы данных и базовые методы ИИ.
Обучение проходит онлайн и подойдёт тем, кто хочет войти в аналитику или систематизировать знания. После выпуска вы получаете дипломы МФТИ и Нетологии и готовое портфолио проектов.
Начать учиться → https://netolo.gy/ew7j
Реклама. ООО “Нетология” ОГРН 1207700135884 Erid: 2VSb5xDB9UM
❤2👍1🥱1
🚀 Создание и управление агентами с LangGraph
LangGraph — это мощный фреймворк для построения и управления долгосрочными, состоянием управляемыми агентами. Он предоставляет низкоуровневую инфраструктуру, позволяя разработчикам создавать надежные и адаптивные системы, которые могут работать в течение длительного времени и восстанавливаться после сбоев.
🚀 Основные моменты:
- Поддержка долговременного выполнения и восстановления после сбоев.
- Встроенный контроль человека для мониторинга состояния агентов.
- Возможности создания состояния с краткосрочной и долгосрочной памятью.
- Интеграция с LangChain для расширенного функционала.
- Готовность к производству с возможностью масштабирования.
📌 GitHub: https://github.com/langchain-ai/langgraph
LangGraph — это мощный фреймворк для построения и управления долгосрочными, состоянием управляемыми агентами. Он предоставляет низкоуровневую инфраструктуру, позволяя разработчикам создавать надежные и адаптивные системы, которые могут работать в течение длительного времени и восстанавливаться после сбоев.
🚀 Основные моменты:
- Поддержка долговременного выполнения и восстановления после сбоев.
- Встроенный контроль человека для мониторинга состояния агентов.
- Возможности создания состояния с краткосрочной и долгосрочной памятью.
- Интеграция с LangChain для расширенного функционала.
- Готовность к производству с возможностью масштабирования.
📌 GitHub: https://github.com/langchain-ai/langgraph
❤4👍4🔥1
⚡️ ERNIE 5.0 - официальный релиз.
Baidu выкатили нативную omni-modal модель, которая умеет понимать и генерировать текст, изображения и аудио.
Ключевая фишка архитектуры - MoE на 2,4 трлн параметров, но в каждом запросе активируется менее 3% параметров.
То есть модель пытается держать качество “больших” систем, но с более эффективным инференсом по стоимости и скорости.
Самое интересное - результаты на бенчмарках (по графикам Baidu):
- Text: ERNIE-5.0 уверенно держится в топ-группе на широком наборе тестов по знаниям, инструкциям, reasoning, математике и коду - на многих метриках близко к GPT-5 (High) / Gemini-3-Pro, а местами выглядит сильнее (особенно на части задач по кодингу и агентным бенчмаркам типа BFCL / BrowserComp / SpreadsheetBench).
- Visual Understanding: по “пониманию картинок” ERNIE-5.0 в ряде STEM/VQA тестов идёт очень высоко - рядом с GPT-5 (High) и Gemini-3-Pro, хорошо выступает на DocVQA/OCR-подобных задачах (документы, таблицы, текст на изображениях) и на блоке General VQA.
- Audio: в speech-to-text chat и audio understanding ERNIE-5.0 показывает конкурентный уровень рядом с Gemini-3-Pro, а по распознаванию речи (ASR) близко к топам на LibriSpeech / AISHELL.
- Visual Generation: по генерации изображений (GenEval) ERNIE-5.0 сравнивают с топовыми генераторами уровня GPT-Image, Seedream, Qwen-Image - и ERNIE выглядит на одном уровне по total score. По генерации видео - рядом с Veo3 / Wan2.1 / Hunyuan Video, с сильными Quality/Semantic оценками.
Baidu делает ставку на “унифицированную мультимодальность” + MoE-эффективность - и судя по бенчмаркам, ERNIE 5.0 реально попадает в верхнюю лигу не только по тексту, но и по vision/audio.
Доступно:
- на сайте ERNIE Bot
- через Baidu AI Cloud Qianfan (для бизнеса и разработчиков)
https://ernie.baidu.com
Baidu выкатили нативную omni-modal модель, которая умеет понимать и генерировать текст, изображения и аудио.
Ключевая фишка архитектуры - MoE на 2,4 трлн параметров, но в каждом запросе активируется менее 3% параметров.
То есть модель пытается держать качество “больших” систем, но с более эффективным инференсом по стоимости и скорости.
Самое интересное - результаты на бенчмарках (по графикам Baidu):
- Text: ERNIE-5.0 уверенно держится в топ-группе на широком наборе тестов по знаниям, инструкциям, reasoning, математике и коду - на многих метриках близко к GPT-5 (High) / Gemini-3-Pro, а местами выглядит сильнее (особенно на части задач по кодингу и агентным бенчмаркам типа BFCL / BrowserComp / SpreadsheetBench).
- Visual Understanding: по “пониманию картинок” ERNIE-5.0 в ряде STEM/VQA тестов идёт очень высоко - рядом с GPT-5 (High) и Gemini-3-Pro, хорошо выступает на DocVQA/OCR-подобных задачах (документы, таблицы, текст на изображениях) и на блоке General VQA.
- Audio: в speech-to-text chat и audio understanding ERNIE-5.0 показывает конкурентный уровень рядом с Gemini-3-Pro, а по распознаванию речи (ASR) близко к топам на LibriSpeech / AISHELL.
- Visual Generation: по генерации изображений (GenEval) ERNIE-5.0 сравнивают с топовыми генераторами уровня GPT-Image, Seedream, Qwen-Image - и ERNIE выглядит на одном уровне по total score. По генерации видео - рядом с Veo3 / Wan2.1 / Hunyuan Video, с сильными Quality/Semantic оценками.
Baidu делает ставку на “унифицированную мультимодальность” + MoE-эффективность - и судя по бенчмаркам, ERNIE 5.0 реально попадает в верхнюю лигу не только по тексту, но и по vision/audio.
Доступно:
- на сайте ERNIE Bot
- через Baidu AI Cloud Qianfan (для бизнеса и разработчиков)
https://ernie.baidu.com
❤9👍5🔥4🥱1