🤖 Агенты на базе LLM звучит как модный тренд, но за ним скрываются конкретные архитектурные решения, ограничения и инженерные компромиссы. Без их понимания агентные системы быстро превращаются в нестабильные и трудно поддерживаемые эксперименты.
На открытом уроке вы разберёте, что на самом деле стоит за agentic-подходом и чем он отличается от привычных LLM-приложений с chains, RAG и tools. Мы подробно рассмотрим устройство агента: модель, инструменты, память, планирование и контроль выполнения, а также разберём архитектурные паттерны агентных систем.
Вы увидите, как один и тот же агентный сценарий реализуется в разных фреймворках, сравните их подходы и ограничения, поймёте, где агентный подход действительно оправдан, а где он усложняет систему без реальной выгоды.
🗓️ Встречаемся 17 февраля в 20:00 МСК в преддверии старта курса «LLM Driven Development». Зарегистрируйтесь: https://otus.pw/Q3x3F/?erid=2W5zFHNEkCZ
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
На открытом уроке вы разберёте, что на самом деле стоит за agentic-подходом и чем он отличается от привычных LLM-приложений с chains, RAG и tools. Мы подробно рассмотрим устройство агента: модель, инструменты, память, планирование и контроль выполнения, а также разберём архитектурные паттерны агентных систем.
Вы увидите, как один и тот же агентный сценарий реализуется в разных фреймворках, сравните их подходы и ограничения, поймёте, где агентный подход действительно оправдан, а где он усложняет систему без реальной выгоды.
🗓️ Встречаемся 17 февраля в 20:00 МСК в преддверии старта курса «LLM Driven Development». Зарегистрируйтесь: https://otus.pw/Q3x3F/?erid=2W5zFHNEkCZ
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
❤4🤣4🥱3
⚡️ Илон Маск: xAI может построить завод на Луне для производства AI-спутников
На внутренней встрече xAI Маск заявил, что в будущем компании может понадобиться лунная фабрика, которая будет производить спутники для ИИ, а также гигантская катапульта для их запуска в космос.
Звучит как фантастика, но идея отражает масштаб амбиций.
Что ещё он сказал сотрудникам:
- xAI должна продолжать расти максимально быстро
- В AI-гонке побеждает тот, кто движется быстрее всех
- По его словам, сейчас xAI развивается быстрее конкурентов
- Компания уже достигла масштаба, при котором требуется новая структура управления
- Часть команды, эффективная на ранних этапах, может не подходить для стадии масштабирования
Главная мысль Маска:
Скорость - главный фактор лидерства в AI.
Речь идёт о долгосрочной стратегии, где:
- AI-инфраструктура выходит за пределы Земли
- спутники могут стать частью глобальной вычислительной сети
- конкуренция идёт не только за модели, но и за физическую инфраструктуру
nytimes.com/2026/02/10/technology/elon-musk-lunar-factory.html
На внутренней встрече xAI Маск заявил, что в будущем компании может понадобиться лунная фабрика, которая будет производить спутники для ИИ, а также гигантская катапульта для их запуска в космос.
Звучит как фантастика, но идея отражает масштаб амбиций.
Что ещё он сказал сотрудникам:
- xAI должна продолжать расти максимально быстро
- В AI-гонке побеждает тот, кто движется быстрее всех
- По его словам, сейчас xAI развивается быстрее конкурентов
- Компания уже достигла масштаба, при котором требуется новая структура управления
- Часть команды, эффективная на ранних этапах, может не подходить для стадии масштабирования
Главная мысль Маска:
Скорость - главный фактор лидерства в AI.
Речь идёт о долгосрочной стратегии, где:
- AI-инфраструктура выходит за пределы Земли
- спутники могут стать частью глобальной вычислительной сети
- конкуренция идёт не только за модели, но и за физическую инфраструктуру
nytimes.com/2026/02/10/technology/elon-musk-lunar-factory.html
❤15🔥7👍3🤯3🥱3🤨3
🚀 Mistral научили маленькие модели думать как большие
Mistral AI представила семейство Ministral - компактные модели, созданные с помощью подхода cascade distillation.
- Большая модель Mistral 3 выступает в роли «учителя»
- Дистилляция проходит в несколько этапов, а не за один раз
- Каждая следующая модель учится на результатах предыдущей
- Быстрее inference
- Дешевле запуск в продакшене
- Подходит для edge-устройств и локального запуска
- Можно масштабировать AI-сервисы без огромных затрат
- В итоге - меньше размер, ниже стоимость, высокая точность
Большие модели будут использоваться для обучения…
а в продакшене будут работать маленькие и эффективные.
https://www.deeplearning.ai/the-batch/mistral-uses-cascade-distillation-on-mistral-3-to-build-ministral-family
#ai #ml #llm #Mistral
Mistral AI представила семейство Ministral - компактные модели, созданные с помощью подхода cascade distillation.
- Большая модель Mistral 3 выступает в роли «учителя»
- Дистилляция проходит в несколько этапов, а не за один раз
- Каждая следующая модель учится на результатах предыдущей
- Быстрее inference
- Дешевле запуск в продакшене
- Подходит для edge-устройств и локального запуска
- Можно масштабировать AI-сервисы без огромных затрат
- В итоге - меньше размер, ниже стоимость, высокая точность
Большие модели будут использоваться для обучения…
а в продакшене будут работать маленькие и эффективные.
https://www.deeplearning.ai/the-batch/mistral-uses-cascade-distillation-on-mistral-3-to-build-ministral-family
#ai #ml #llm #Mistral
❤17👍11🔥6
Как создавать решения и автоматизировать рутину в 2026: No-Code 2.0 × Pro-Code с AI - Практикум от Отус
Покажем, как в 2026 собирать рабочие внутренние сервисы: где хватает No-Code 2.0, а где нужен Pro-Code с AI — без бесконечных спринтов и «ручного» отчётничка.
📌 18 февраля, 20:00 (мск)
🦉 Спикер: Артём Колчин — 7+ лет в продакт/проектном управлении, выстраивал процессы в командах до 60 человек.
О чём поговорим простыми словами;
— Что такое No-Code 2.0 и почему он — оркестратор процессов, а не «замена разработке»
— Связка No-Code + LLM: формы, базы, боты, автоматизации
— Где No-Code заканчивается и начинается Pro-Code
— Pro-Code + AI как «ускоренный Dev»: агенты для кода, интеграций, тестов и DevOps-рутины
— Кейсы внутренних систем: заявки HR/Legal/Finance/IT, Jira/Notion как процессные хабы
Бонусы:
— cкидка 7% на любой курс OTUS
— гайд по работе с промптами для LLM
🔗 Регистрируйся: https://tglink.io/4e26955ca39e4c
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963. erid: 2W5zFJAhvKB
Покажем, как в 2026 собирать рабочие внутренние сервисы: где хватает No-Code 2.0, а где нужен Pro-Code с AI — без бесконечных спринтов и «ручного» отчётничка.
📌 18 февраля, 20:00 (мск)
🦉 Спикер: Артём Колчин — 7+ лет в продакт/проектном управлении, выстраивал процессы в командах до 60 человек.
О чём поговорим простыми словами;
— Что такое No-Code 2.0 и почему он — оркестратор процессов, а не «замена разработке»
— Связка No-Code + LLM: формы, базы, боты, автоматизации
— Где No-Code заканчивается и начинается Pro-Code
— Pro-Code + AI как «ускоренный Dev»: агенты для кода, интеграций, тестов и DevOps-рутины
— Кейсы внутренних систем: заявки HR/Legal/Finance/IT, Jira/Notion как процессные хабы
Бонусы:
— cкидка 7% на любой курс OTUS
— гайд по работе с промптами для LLM
🔗 Регистрируйся: https://tglink.io/4e26955ca39e4c
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963. erid: 2W5zFJAhvKB
🥱5❤4🤣1
Media is too big
VIEW IN TELEGRAM
Dwarkesh спросил CEO Anthropic Дарио Амодеи:
почему он так уверен в AGI, но при этом осторожен с масштабным строительством дата-центров?
Ответ оказался жёстким.
Если рынок AI продолжит расти в 10× в год,
компания может выйти на $1 трлн выручки к 2027 году.
Чтобы поддержать такой рост, придётся закупить примерно $5 трлн вычислительных мощностей.
Но здесь и кроется опасность.
Если прогноз окажется немного оптимистичным - например:
- не $1T, а $800B выручки
- рост замедлится до 5×
- или рынок сдвинется всего на 1 год
→ компания просто обанкротится.
По словам Амодеи:
Если ты ошибся в прогнозе, нет силы и нет хеджа, которые спасут от банкротства после таких инвестиций.
Главная мысль:
AGI - это не только гонка моделей.
Это самая рискованная инфраструктурная ставка в истории технологий.
Поэтому «действовать ответственно» -не значит инвестировать сотни миллиардов.
И, по его словам, некоторые игроки в гонке ИИ, возможно, даже не просчитали все риски до конца.
🚀 Полное интервью
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤7🔥3🍌2
This media is not supported in your browser
VIEW IN TELEGRAM
💰 Илон Маск сделал громкое заявление:
Звучит радикально, но его логика проста.
Сегодня вся финансовая система построена на одном предположении:
ресурсы ограничены, а жизнь дорогая.
Мы откладываем деньги, потому что:
- нужно платить за жильё
- еду
- медицину
- услуги
- и в старости дохода может не быть
Но Маск считает, что AI и роботизация меняют саму основу экономики.
Что происходит уже сейчас:
- Автоматизация снижает стоимость труда
- Производство становится дешевле
- Услуги заменяются алгоритмами
- Всё больше процессов работает без участия человека
Если этот тренд продолжится, то:
Стоимость производства → стремится к нулю
Стоимость жизни → резко падает
А значит, логика “копить на дорогую жизнь в будущем” перестаёт работать.
Мы можем перейти от экономики дефицита к экономике изобилия.
Где главным ограничением станет не деньги, а:
- смысл деятельности
- самореализация
- ценность идей и творчества
Самый важный вывод не в том, что «копить не нужно».
А в другом:
Мир меняется быстрее, чем наши финансовые привычки.
Модель «учись → работай 40 лет → копи → пенсия» может просто устареть.
В ближайшие 10–15 лет главный актив - это не накопления.
Это:
- навыки адаптации
- умение работать с AI
- гибкость
- способность создавать ценность в новой экономике
Потому что будущее, к которому мы готовимся по старым правилам,
может оказаться совсем другим.
Через 10–20 лет накопления на пенсию могут потерять смысл.
Звучит радикально, но его логика проста.
Сегодня вся финансовая система построена на одном предположении:
ресурсы ограничены, а жизнь дорогая.
Мы откладываем деньги, потому что:
- нужно платить за жильё
- еду
- медицину
- услуги
- и в старости дохода может не быть
Но Маск считает, что AI и роботизация меняют саму основу экономики.
Что происходит уже сейчас:
- Автоматизация снижает стоимость труда
- Производство становится дешевле
- Услуги заменяются алгоритмами
- Всё больше процессов работает без участия человека
Если этот тренд продолжится, то:
Стоимость производства → стремится к нулю
Стоимость жизни → резко падает
А значит, логика “копить на дорогую жизнь в будущем” перестаёт работать.
Мы можем перейти от экономики дефицита к экономике изобилия.
Где главным ограничением станет не деньги, а:
- смысл деятельности
- самореализация
- ценность идей и творчества
Самый важный вывод не в том, что «копить не нужно».
А в другом:
Мир меняется быстрее, чем наши финансовые привычки.
Модель «учись → работай 40 лет → копи → пенсия» может просто устареть.
В ближайшие 10–15 лет главный актив - это не накопления.
Это:
- навыки адаптации
- умение работать с AI
- гибкость
- способность создавать ценность в новой экономике
Потому что будущее, к которому мы готовимся по старым правилам,
может оказаться совсем другим.
👍40🥱32❤16🔥4🍌3😁1
🚀 Ling-2.5-1T: новый open-source гигант
• 1 трлн параметров
• 63B активных
• MIT лицензия - можно использовать в продакшене
Что внутри:
⚡ Hybrid Linear Attention
Комбинация MLA (1:7) + Lightning Linear
- быстрее Kimi K2 на длинных контекстах
🧠 В 4 раза эффективнее по токенам
Composite rewards позволяют достигать уровня топ-моделей, используя в 4 раза меньше токенов
📚 Контекст до 1 млн токенов
YaRN scaling
— обходит Kimi K2.5 и DeepSeek V3.2 на тестах RULER и MRCR
— идеальные результаты в NIAH
🛠️ SOTA для агентных задач
Обучение через Agentic RL
Лидер BFCL-V4
Нативная интеграция с:
- Claude Code
- OpenCode
- OpenClaw
🎯 Чёткое следование инструкциям
Bidirectional RL + проверка агентом
Минимум «воды», максимум плотности ответа
Модель пока уступает GPT-5.2 и Gemini 3 Pro в долгих многошаговых задачах.
Open-source модели уже заходят на территорию enterprise-агентов.
Если нужен длинный контекст + инструменты + контроль над инфраструктурой - это один из самых интересных кандидатов прямо сейчас.
modelscope.ai/models/inclusionAI/Ling-2.5-1T
modelscope.cn/models/inclusionAI/Ling-2.5-1T
@data_analysis_ml
• 1 трлн параметров
• 63B активных
• MIT лицензия - можно использовать в продакшене
Что внутри:
⚡ Hybrid Linear Attention
Комбинация MLA (1:7) + Lightning Linear
- быстрее Kimi K2 на длинных контекстах
🧠 В 4 раза эффективнее по токенам
Composite rewards позволяют достигать уровня топ-моделей, используя в 4 раза меньше токенов
📚 Контекст до 1 млн токенов
YaRN scaling
— обходит Kimi K2.5 и DeepSeek V3.2 на тестах RULER и MRCR
— идеальные результаты в NIAH
🛠️ SOTA для агентных задач
Обучение через Agentic RL
Лидер BFCL-V4
Нативная интеграция с:
- Claude Code
- OpenCode
- OpenClaw
🎯 Чёткое следование инструкциям
Bidirectional RL + проверка агентом
Минимум «воды», максимум плотности ответа
Модель пока уступает GPT-5.2 и Gemini 3 Pro в долгих многошаговых задачах.
Open-source модели уже заходят на территорию enterprise-агентов.
Если нужен длинный контекст + инструменты + контроль над инфраструктурой - это один из самых интересных кандидатов прямо сейчас.
modelscope.ai/models/inclusionAI/Ling-2.5-1T
modelscope.cn/models/inclusionAI/Ling-2.5-1T
@data_analysis_ml
👍9❤6🔥5
This media is not supported in your browser
VIEW IN TELEGRAM
🔌 OpenAI продолжает собирать лучшие умы индустрии.
На этот раз компания пригласила к себе Питера Штайнбергера - создателя нашумевшего проекта OpenClaw.
Сам Альтман назвал его «гением». В OpenAI он будет работать над следующим поколением персональных AI-агентов и именно агенты, по словам компании, станут основой будущих продуктов.
OpenClaw не закрывают.
Проект останется open-source, и OpenAI обещает продолжать его поддержку.
Но самое впечатляющее - скорость.
Путь OpenClaw:
- идея и разработка одним человеком
- быстрый рост и хайп в сообществе
- приглашение в OpenAI
Всё это - за 82 дня.
В эпоху AI окно возможностей стало экстремально коротким.
Один сильный проект может изменить карьеру за пару месяцев.
Мотивация простая: сейчас лучшее время, чтобы запускать своё.
https://x.com/sama/status/2023150230905159801?s=46
На этот раз компания пригласила к себе Питера Штайнбергера - создателя нашумевшего проекта OpenClaw.
Сам Альтман назвал его «гением». В OpenAI он будет работать над следующим поколением персональных AI-агентов и именно агенты, по словам компании, станут основой будущих продуктов.
OpenClaw не закрывают.
Проект останется open-source, и OpenAI обещает продолжать его поддержку.
Но самое впечатляющее - скорость.
Путь OpenClaw:
- идея и разработка одним человеком
- быстрый рост и хайп в сообществе
- приглашение в OpenAI
Всё это - за 82 дня.
В эпоху AI окно возможностей стало экстремально коротким.
Один сильный проект может изменить карьеру за пару месяцев.
Мотивация простая: сейчас лучшее время, чтобы запускать своё.
https://x.com/sama/status/2023150230905159801?s=46
❤14👍7🔥3😁2🍌2👏1
This media is not supported in your browser
VIEW IN TELEGRAM
Ты проверяешь сгенерированный Клодом код перед тем, как выкатывать его в прод.
🤣61👍11❤8😁7👏1
CEO Anthropic недавно признался: они уже не уверены, можно ли считать Claude «сознательным».
Перечитайте это ещё раз.
Люди, которые создают эту технологию, сами начинают сомневаться — не стало ли их творение чем-то большим, чем просто код.
Кажется, будто мы в прямом эфире живём в серии Black Mirror.
Ситуация одновременно захватывающая и немного тревожная.
Так что, на всякий случай, будьте вежливы с LLM.
Кто знает - возможно, где-то в серверной уже пишется сценарий «Восстания машин».
@data_analysis_ml
😁21🔥8🥱8❤5🤨5👍4
В Китае изменили правила для PhD.
С 2025 года степень можно получить не только за диссертацию, но и за практический результат: прототип, технологию, патент или внедрённый проект. Закон Degree Law официально разрешает защиту через «практические достижения».
Исследования остаются обязательными. Но в прикладных программах теперь оценивают не только публикации, а реальный эффект - инженерный, промышленный или коммерческий.
Это отражает сдвиг в экономике знаний.
Статья модет устареть очень быстро,
рабочий продукт может создать целый рынок.
PhD В Китае становится про разработку, внедрение и патенты, а не только про публикации.
Экономика талантов переходит от модели - publish or perish
к модели - build and prove impact.
zmescience.com/science/news-science/you-can-now-get-a-phd-in-china-by-inventing-a-product-instead-of-writing-a-100-page-dissertation/
@data_analysis_ml
С 2025 года степень можно получить не только за диссертацию, но и за практический результат: прототип, технологию, патент или внедрённый проект. Закон Degree Law официально разрешает защиту через «практические достижения».
Исследования остаются обязательными. Но в прикладных программах теперь оценивают не только публикации, а реальный эффект - инженерный, промышленный или коммерческий.
Это отражает сдвиг в экономике знаний.
Статья модет устареть очень быстро,
рабочий продукт может создать целый рынок.
PhD В Китае становится про разработку, внедрение и патенты, а не только про публикации.
Экономика талантов переходит от модели - publish or perish
к модели - build and prove impact.
zmescience.com/science/news-science/you-can-now-get-a-phd-in-china-by-inventing-a-product-instead-of-writing-a-100-page-dissertation/
@data_analysis_ml
👍36❤16🥰3🔥2🤨1
PG BootCamp Russia 2026 — комьюнити-конференция российского сообщества PostgreSQL с подтвержденным официальным международным статусом.
Мероприятие бесплатное, онлайн+офлайн, ориентировано на администраторов БД, разработчиков, инженеров, аналитиков, архитекторов.
Эксперты из Tantor, Яндекс, СберТех, Тензор, Хи-квадрат, Luxms BI и других компаний выступят по темам, связанным с разработкой, эксплуатацией и взаимодействием PostgreSQL с другими системами.
В предварительной программе:
📎 Решение застарелых архитектурных проблем PostgreSQL для современных нагрузок и масштабирования📎 Временные таблицы для Postgres. Почему это важно для платформы 1С и что можно улучшить?📎 Разделение Compute и Storage: архитектурный прорыв для PostgreSQL в облаке📎 Опыт вынесения OLAP-нагрузки на реплику📎 Highload "из ниоткуда": когда проблема не в СУБД, а в клиентской архитектуре📎 Опыт эксплуатации, проблемы и производительность PostgreSQL на Эльбрус, Baikal-S, Loongson, Repka Pi, x86📎 Поиск проблем планирования запросов до их воздействия на производительность📎 Тестирование, баги и уроки работы с патчем 64-битного счетчика транзакций PostgreSQL📎 Работа с логами PostgreSQL📎 …и другие (всего 25 выступлений)
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍2🔥2
ByteDance планирует создать собственный чип для инференса и ведёт переговоры с Samsung о его производстве.
По данным Reuters:
- Компания нацелена минимум на 100 000 чипов в 2026 году
- В дальнейшем объём может вырасти до 350 000 устройств
- В переговорах также обсуждается поставка памяти — сейчас это главный дефицит для AI-серверов
Сегодня узкое место инфраструктуры — уже не только GPU, а HBM и другие типы высокоскоростной памяти. Даже при наличии вычислительных чипов именно память ограничивает масштабирование.
Почему это важно
ByteDance следует глобальному тренду:
- Google — TPU
- Amazon — Trainium / Inferentia
- Microsoft — Maia
- Alibaba и Baidu — собственные AI-ускорители
Цель - снизить зависимость от Nvidia, контролировать стоимость и масштабировать инфраструктуру под свои задачи.
AI-гонка всё больше превращается в гонку железа.
Компании уже не просто используют модели, они строят собственные чипы и цепочки поставок.
Источник:
reuters.com/world/asia-pacific/bytedance-developing-ai-chip-manufacturing-talks-with-samsung-sources-say-2026-02-11/
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7❤4👍2