Forwarded from DataEng
Курс AI Agents от Microsoft
Нашел на просторах сети бесплатный курс по AI Агентам от Microsoft: https://microsoft.github.io/ai-agents-for-beginners/
Помимо текстового материала есть и видео лекции на Ютубе.
Нашел на просторах сети бесплатный курс по AI Агентам от Microsoft: https://microsoft.github.io/ai-agents-for-beginners/
Помимо текстового материала есть и видео лекции на Ютубе.
ai-agents-for-beginners
AI Agents for Beginners - A Course
12 Lessons to Get Started Building AI Agents
❤🔥7
Forwarded from Павленко про Dev & AI
OpenAI показали свои новые модели GPT-4.1, GPT-4.1 mini и GPT-4.1 nano
В чате их не будет: они только для разработчиков в API. У всех трех моделей контекст 1 миллион токенов, для OpenAI это впервые. Знания до 1 июля 2024.
Эти модели тренировали специально, чтобы они были эффективны в задачах связанных с разработкой. В честь запуска Cursor и Windsurf дают попользоваться этими моделями совершенно бесплатно 🆓
В чате их не будет: они только для разработчиков в API. У всех трех моделей контекст 1 миллион токенов, для OpenAI это впервые. Знания до 1 июля 2024.
Эти модели тренировали специально, чтобы они были эффективны в задачах связанных с разработкой. В честь запуска Cursor и Windsurf дают попользоваться этими моделями совершенно бесплатно 🆓
❤🔥8
Forwarded from Dealer.AI
AirFlow, MLFlow, DVC, ClearML?? Пффф. IstructPipe от Google!!!
Вот тебе шкет, к вайб кодингу еще и вайб пайпинг.Фу, звучит даже противно.
Крч берёшь, пишешь инструкцию к LLM для ML пайпа и получаешь псевдокод, псевдо инструкцию, и псевдо интерпретацию.🤣 🤣 🤣
Шучу, получаешь крч ток псевдо код, пайп и блоксхемку.
Делоешь, вайб автомотизируешь и койфуешь.
https://research.google/blog/instructpipe-generating-visual-blocks-pipelines-with-human-instructions-and-llms/
Вот тебе шкет, к вайб кодингу еще и вайб пайпинг.
Крч берёшь, пишешь инструкцию к LLM для ML пайпа и получаешь псевдокод, псевдо инструкцию, и псевдо интерпретацию.
Шучу, получаешь крч ток псевдо код, пайп и блоксхемку.
Делоешь, вайб автомотизируешь и койфуешь.
https://research.google/blog/instructpipe-generating-visual-blocks-pipelines-with-human-instructions-and-llms/
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥7
Что нового?
🧩 Микросервисная архитектура
⚡ Событийное планирование
🧬 Версионирование DAG'ов
🖥️ Новый интерфейс на React
🔐 Улучшенная безопасность
🌍 Удалённое выполнение задач
🐍 Поддержка только Python 3.9+
🔗 Подробнее: Релиз Airflow 3.0.0
#ApacheAirflow #DataEngineering #Airflow3 #WorkflowOrchestration
https://github.com/apache/airflow/releases/tag/3.0.0
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
Release Airflow 3.0.0 · apache/airflow
📣 We are proud to announce the General Availability of Apache Airflow® 3.0, the most significant release in the project’s history.
Airflow 3.0 builds on the foundation of Airflow 2 and introduces a...
Airflow 3.0 builds on the foundation of Airflow 2 and introduces a...
❤🔥6
Forwarded from Находки в опенсорсе
PEP 750: t-строки в 3.14
В питон добавили еще один способ форматировать строки. Теперь – со специальным АПИ для внешних интеграций.
- PEP: https://peps.python.org/pep-0750
- Реализация: https://github.com/python/cpython/pull/132662
Основная причина: использовать
string.templatelib.Template
Новый префикс
Обратите внимание, что при создании
Давайте посмотрим на примере. Допустим, мы хотим формировать URL из наших данных:
И сам код логики форматирования, где мы будем вставлять значения разным способом. Если у нас шаблон
И вот результат:
Только теперь наш
У нас есть полный контроль за процессом форматирования. Вот в чем суть данного ПЕПа.
Фичи одной строкой
- Работает
- Есть привычные определители формата:
-
- Поддерживается режим raw строк:
Как устроено внутри?
Интересные места имплементации:
- Изменения лексера
- Изменения грамматики языка
- Новое CAPI
- Новые классы
- Новый байткод
Обсуждение: как вам еще один способ форматирования строк?
| Поддержать | YouTube | GitHub | Чат |
В питон добавили еще один способ форматировать строки. Теперь – со специальным АПИ для внешних интеграций.
- PEP: https://peps.python.org/pep-0750
- Реализация: https://github.com/python/cpython/pull/132662
Основная причина: использовать
f строки удобно, но нет никакого АПИ для перехвата момента "вставки" или интерполяции значений. Например, при форматировании html или sql – требуется специальным образом делать escape для значений. И раньше код вида f"<div>{template}</div>" представлял собой дыру в безопасности и потенциальное место для XSS.string.templatelib.Template
Новый префикс
t не будет создавать объект str, он будет создавать объект класса string.templatelib.Template:
>>> user = 'sobolevn'
>>> template = t"Hi, {user}"
>>> template
Template(strings=('Hi, ', ''), interpolations=(Interpolation('sobolevn', 'user', None, ''),))
>>> from string.templatelib import Template
>>> isinstance(template, Template)
True
Обратите внимание, что при создании
template – у нас не произошло форматирование сразу. Мы создали объект, у которого есть свойства strings и interpolations, из которых можно собрать финальную отформатированную строку.Давайте посмотрим на примере. Допустим, мы хотим формировать URL из наших данных:
>>> domain = 'example.com'
>>> query = 'python string formatting is too complex'
>>> template = t'https://{domain}?q={query}'
И сам код логики форматирования, где мы будем вставлять значения разным способом. Если у нас шаблон
query, то мы будем использовать quote_plus для его форматирования. Остальные значения – будем вставлять как есть:
>>> from string.templatelib import Template, Interpolation
>>> from urllib.parse import quote_plus
>>> def format_url(template: Template) -> str:
... parts = []
... for part in template:
... match part:
... case str() as s: # regular string
... parts.append(s)
... case Interpolation(value, expression='query'):
... parts.append(quote_plus(value))
... case Interpolation(value):
... parts.append(value)
... return ''.join(parts)
И вот результат:
>>> format_url(template)
'https://example.com?q=python+string+formatting+is+too+complex'
Только теперь наш
Template был отформатирован. Нами. Ручками.У нас есть полный контроль за процессом форматирования. Вот в чем суть данного ПЕПа.
Фичи одной строкой
- Работает
= как обычно в f строках: t'{user=}'- Есть привычные определители формата:
!r, !s, .2f, тд-
t строки можно конкатенировать: t'Hello' + t' , world!' и t'Hello, ' + 'world'- Поддерживается режим raw строк:
rt"Hi \n!"Как устроено внутри?
Интересные места имплементации:
- Изменения лексера
- Изменения грамматики языка
- Новое CAPI
_PyTemplate- Новые классы
Template и Interpolation написанные на C- Новый байткод
BUILD_INTERPOLATION и BUILD_TEMPLATE
>>> import dis
>>> user = 'sobolevn'
>>> dis.dis('t"Hi, {user}"')
0 RESUME 0
1 LOAD_CONST 2 (('Hi, ', ''))
LOAD_NAME 0 (user)
LOAD_CONST 1 ('user')
BUILD_INTERPOLATION 2
BUILD_TUPLE 1
BUILD_TEMPLATE
RETURN_VALUE
Обсуждение: как вам еще один способ форматирования строк?
| Поддержать | YouTube | GitHub | Чат |
Python Enhancement Proposals (PEPs)
PEP 750 – Template Strings | peps.python.org
This PEP introduces template strings for custom string processing.
#data #datasets
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥8👏1
Forwarded from Время Валеры
Недавно на одной встрече, очень большой начальник заметил: с учётом того, что мы теперь много нанимаем по всему миру и в разных часовых зонах, умение писать становится критически важным.
Спорить с этим сложно, и переоценить важность тоже. К сожалению, многие люди катастрофически не умеют формулировать свои мысли — отсюда все эти «давай быстро созвонимся», «пересечёмся раз на раз» или голосовые сообщения. Не всегда, но очень часто это происходит не потому, что встреча действительно нужна, а потому что человек просто не в состоянии организовать свой словесный салат во что-то внятное. В итоге он выливает свои мысленные помои на собеседника в надежде, что тот переработает это во что-то осмысленное — вместо того чтобы самому потратить время и внимание.
Черчилль как-то написал: «Прости, времени было мало, поэтому письмо длинное». И почти все это понимают на подсознательном уровне — отсюда все мемы и приколы про голосовые сообщения. Сложно переоценить важность хорошей культуры письма: она не только экономит кучу времени и сил, позволяет работать асинхронно, но со временем ещё и учит человека мыслить собранно и чётко.
Возможно, не стоит доходить до пределов ребят из провинции Лакония с их «если», но пример с них брать точно стоит. В здоровом письме — здоровый дух. А лучшая встреча - это короткая встреча
Спорить с этим сложно, и переоценить важность тоже. К сожалению, многие люди катастрофически не умеют формулировать свои мысли — отсюда все эти «давай быстро созвонимся», «пересечёмся раз на раз» или голосовые сообщения. Не всегда, но очень часто это происходит не потому, что встреча действительно нужна, а потому что человек просто не в состоянии организовать свой словесный салат во что-то внятное. В итоге он выливает свои мысленные помои на собеседника в надежде, что тот переработает это во что-то осмысленное — вместо того чтобы самому потратить время и внимание.
Черчилль как-то написал: «Прости, времени было мало, поэтому письмо длинное». И почти все это понимают на подсознательном уровне — отсюда все мемы и приколы про голосовые сообщения. Сложно переоценить важность хорошей культуры письма: она не только экономит кучу времени и сил, позволяет работать асинхронно, но со временем ещё и учит человека мыслить собранно и чётко.
Возможно, не стоит доходить до пределов ребят из провинции Лакония с их «если», но пример с них брать точно стоит. В здоровом письме — здоровый дух. А лучшая встреча - это короткая встреча
👏10
Forwarded from DataEng
MANNING_Practical_Guide_to_Apache_Airflow_3.pdf
14 MB
The Practical Guide to Airflow 3 🚀
Дорогие друзья, я вижу как вам нравятся посты про Apache Airflow. В этот раз очередной пост про него любимого 😊
Прошла неделя с релиза Apache Airflow 3, и вот в сети от ребят из Astronomer выходит небольшая книга The Practical Guide to Airflow 3 за авторством Tamara Janina Fingerlin, Developer Advocate, Astronomer. Книга издательства Manning, доступна бесплатно в электронном формате. Книга заточена под новшества новой версии, и будет полезна как начинающим так и опытным дата инженерам, планирующим переход на тройку.
У меня пока не дошли руки потестировать новую версию, планирую это сделать на выходных. А вы уже попробовали?
Дорогие друзья, я вижу как вам нравятся посты про Apache Airflow. В этот раз очередной пост про него любимого 😊
Прошла неделя с релиза Apache Airflow 3, и вот в сети от ребят из Astronomer выходит небольшая книга The Practical Guide to Airflow 3 за авторством Tamara Janina Fingerlin, Developer Advocate, Astronomer. Книга издательства Manning, доступна бесплатно в электронном формате. Книга заточена под новшества новой версии, и будет полезна как начинающим так и опытным дата инженерам, планирующим переход на тройку.
У меня пока не дошли руки потестировать новую версию, планирую это сделать на выходных. А вы уже попробовали?
❤🔥12
Forwarded from Время Валеры
Во время лекции о сборе данных на курсе по ML System Design зашёл разговор о data governance. Пришли к неожиданным выводам:
1. Нормального определения нет, даже Data Management Institute не даёт чёткого ответа.
2. Попробовали сформулировать своё: Data Governance — это связка между процессами и политиками (policy), с одной стороны, и контролем + внедрением(policy enforcement), с другой, направленная на реализацию стратегии данных компании. (Часто стратегия сводится к обеспечению быстрого и бесшовного доступа к актуальным, полным и качественным данным с учётом контроля доступа и соблюдения комплаенса. Но, как известно по Румельту, это не совсем стратегия, поэтому требуется стратегия достижения, и data governance ближе к таковой.)
Проблема в том, что вторая часть связки — контроль и внедрение — часто отсутствует. Это приводит к тому, что через X лет после утверждения стратегии участники начинают перекладывать ответственность друг на друга, тыкать пальцем , и побеждает тот, у кого «палец длиннее».
Потенциальным решением видится направление в продуктовые/бизнес команды людей, который будет делать эту неблагодарную и важную работу, но и это непросто
1. Нормального определения нет, даже Data Management Institute не даёт чёткого ответа.
2. Попробовали сформулировать своё: Data Governance — это связка между процессами и политиками (policy), с одной стороны, и контролем + внедрением(policy enforcement), с другой, направленная на реализацию стратегии данных компании. (Часто стратегия сводится к обеспечению быстрого и бесшовного доступа к актуальным, полным и качественным данным с учётом контроля доступа и соблюдения комплаенса. Но, как известно по Румельту, это не совсем стратегия, поэтому требуется стратегия достижения, и data governance ближе к таковой.)
Проблема в том, что вторая часть связки — контроль и внедрение — часто отсутствует. Это приводит к тому, что через X лет после утверждения стратегии участники начинают перекладывать ответственность друг на друга, тыкать пальцем , и побеждает тот, у кого «палец длиннее».
Потенциальным решением видится направление в продуктовые/бизнес команды людей, который будет делать эту неблагодарную и важную работу, но и это непросто
Jeff Zych's Internet Nook
Notes from “Good Strategy / Bad Strategy” by Jeff Zych
Strategy has always been difficult for me to pin down. What does a strategy look like? What makes a strategy good or bad? “Good Strategy / Bad Strategy,” by UCLA Anderson School of Management professor Richard P. Rumelt, takes a nebulous concept and makes…
❤🔥6
Forwarded from Николай Хитров | Блог
Ученые смогли в мечту алхимиков
Вот это я понимаю инженеры. Перекладывают не json-ы, а сразу материю
https://4pda.to/2025/05/11/441908/vnutri_bolshogo_adronnogo_kollajdera_svinets_prevratili_v_zoloto/
Вот это я понимаю инженеры. Перекладывают не json-ы, а сразу материю
https://4pda.to/2025/05/11/441908/vnutri_bolshogo_adronnogo_kollajdera_svinets_prevratili_v_zoloto/
4PDA - Новости мира мобильных устройств
Внутри большого адронного коллайдера свинец превратили в золото - 4PDA
👏10
LangGraph Swarm — построй рой агентов на пальцах 🐝 🐝 🐝 🐝
Представь:
У тебя есть несколько AI-агентов, каждый умеет своё. Один считает, другой разговаривает как пират, третий помогает писать код. И вот ты строишь между ними диалог, в котором они сами решают, кто и когда берёт слово.
Именно это и делает LangGraph Swarm — свежая Python-библиотека от команды LangChain.
Что умеет:
🔜 Роевой интеллект: агенты работают вместе, передают друг другу управление, когда это нужно.
🔜 Память: встроенная поддержка контекста — помнят, о чём шла речь раньше.
🔜 Передача задач: любой агент может сказать: «Этим лучше займётся коллега».
Пример:
Один агент — “Алиса”, спец по математике. Второй — “Боб”, просто болтает в пиратском стиле. Если пользователь сначала хочет поговорить с Бобом, но потом задаёт вопрос «Сколько будет 5 + 7?» — Боб передаёт управление Алисе. Умно и без лишнего кода.
Код выглядит примерно так:
〰️ 〰️ 〰️ 〰️ 〰️ 〰️ 〰️ 〰️
Для кого эта библиотека?
Для тех, кто строит умные ассистенты, чат-сценарии или многошаговые пайплайны, где важно гибко управлять диалогом между агентами.
Где посмотреть:
github.com/langchain-ai/langgraph-swarm-py
〰️ 〰️ 〰️ 〰️ 〰️ 〰️ 〰️ 〰️
Спокойный, гибкий и почти готовый движок для AI-команд. Стоит затестить.
#ai #llm #agents #swarm #langgraph
Представь:
У тебя есть несколько AI-агентов, каждый умеет своё. Один считает, другой разговаривает как пират, третий помогает писать код. И вот ты строишь между ними диалог, в котором они сами решают, кто и когда берёт слово.
Именно это и делает LangGraph Swarm — свежая Python-библиотека от команды LangChain.
Что умеет:
Пример:
Один агент — “Алиса”, спец по математике. Второй — “Боб”, просто болтает в пиратском стиле. Если пользователь сначала хочет поговорить с Бобом, но потом задаёт вопрос «Сколько будет 5 + 7?» — Боб передаёт управление Алисе. Умно и без лишнего кода.
Код выглядит примерно так:
from langgraph_openai import ChatOpenAI
from langgraph_swarm import create_handoff_tool, create_swarm
from langgraph.prebuilt import create_react_agent
model = ChatOpenAI(model="gpt-4o")
alice = create_react_agent(
model,
[lambda a, b: a + b, create_handoff_tool("Bob")],
prompt="Ты — Алиса, эксперт по сложению чисел.",
name="Alice",
)
bob = create_react_agent(
model,
[create_handoff_tool("Alice", denoscription="Алиса лучше справится с математикой")],
prompt="Ты — Боб, общаешься в пиратском стиле.",
name="Bob",
)
swarm = create_swarm([alice, bob], default_active_agent="Alice")
Для кого эта библиотека?
Для тех, кто строит умные ассистенты, чат-сценарии или многошаговые пайплайны, где важно гибко управлять диалогом между агентами.
Где посмотреть:
github.com/langchain-ai/langgraph-swarm-py
Спокойный, гибкий и почти готовый движок для AI-команд. Стоит затестить.
#ai #llm #agents #swarm #langgraph
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - langchain-ai/langgraph-swarm-py: For your multi-agent needs
For your multi-agent needs. Contribute to langchain-ai/langgraph-swarm-py development by creating an account on GitHub.
1❤🔥7