datascienceinfo – Telegram
datascienceinfo
36.7K subscribers
814 photos
41 videos
460 files
1.51K links
🧠The learning hub for Data Science, ML and AI
1) Data Science
2) Machine Learning
3) Data viz
4) Artificial Intelligence
5) Quizzes
6) Ebooks
7) Articles
Download Telegram
👉If you are familiar with Jupyter notebook and want to learn how to use its capabilities to perform various data science tasks, this is the book for you! From data exploration to visualization, this book will take you through every step of the way in implementing an effective data science pipeline using Jupyter.
A beginner-friendly list of data science projects


1) Rainfall in India

Project type: Visualization
Link to dataset : https://www.kaggle.com/rajanand/rainfall-in-india

2) Global Suicide Rates

Project type: Exploratory Data Analysis
Link to dataset : https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016

3) Summer Olympic Medals

Project type: Exploratory Data Analysis
Link to dataset : https://www.kaggle.com/divyansh22/summer-olympics-medals

4) World Happiness Report

Project type: Exploratory Data Analysis
Link to dataset : https://www.kaggle.com/unsdsn/world-happiness

5) Pollution in the United States

Project type: Visualization
Link to dataset : https://www.kaggle.com/sogun3/uspollution

6) Nutrition Facts for McDonald’s Menu

Project type: Exploratory Data Analysis
Link to dataset : https://www.kaggle.com/mcdonalds/nutrition-facts

7) Red Wine Quality

Project type: Prediction Modeling
Link to dataset : https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009
😃Huge List of Free Machine Learning resources like 620K+ Datasets, 150+ Notebooks, & many more......

Link : https://aihub.cloud.google.com/u/0/
What is the output of the following code snippet?

func = lambda x: return x print(func(2))
Anonymous Quiz
6%
x
30%
SyntaxError
21%
2.0
41%
2
3%
0
Click on the 💡 icon for answer explanation👆
👍 Best TED Talks for Data Science


1. How not to be ignorant about the world

Topic: Data Visualization
Speaker: Hans Rosling, author of “Factfulness”
Link : https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen?language=en

2. The Beauty of Data Visualization

Topic: Data Visualization
Speaker: David McCandless, renowned data journalists.
Link : https://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization?language=en

3. Three ways to spot a bad statistic

Topic: Statistics
Speaker: Mona Chalabi, data journalist
Link : https://www.ted.com/talks/mona_chalabi_3_ways_to_spot_a_bad_statistic?referrer=playlist-making_sense_of_too_much_data

4. Big Data is better data

Topic: Big Data
Speaker: Kenneth Cukier, data analyst for The Economist
Link : https://www.ted.com/talks/kenneth_cukier_big_data_is_better_data

5. The human insight missing from Big Data

Topic: Big Data
Speaker: Tricia Wang, global tech ethnographer
Link : https://www.ted.com/talks/tricia_wang_the_human_insights_missing_from_big_data?referrer=playlist-making_sense_of_too_much_data

6. Your company’s data could end world hunger

Topic: The value of data
Speaker: Dr. Mallory Freeman, Lead Data Scientist in the UPS Advanced Technology Group
Link : https://www.ted.com/talks/mallory_freeman_your_company_s_data_could_help_end_world_hunger?referrer=playlist-making_sense_of_too_much_data

7. Who Controls the World

Topic: Complexity Theory
Speaker: James B. Glattfelder, Swiss Scientist
Link : https://www.ted.com/talks/james_b_glattfelder_who_controls_the_world?language=en
List a is defined as follows:

a = [1, 2, 3, 4, 5] Select all of the following statements that remove the middle element 3 from a so that it equals [1, 2, 4, 5]:
Anonymous Poll
58%
a.remove(3)
21%
a[2] = [ ]
19%
a[2:3] = [ ]
50%
del a[2]
7%
a[2:2] = [ ]
1
a, b, c = (1, 2, 3, 4, 5, 6, 7, 8, 9)[1::3]

Following execution of this statement, what is the value of b:
Anonymous Quiz
19%
6
32%
2
26%
4
23%
5
Click on the 💡icon for answer explanation 👆
What is the result of this statement:

>>> z = {'b', 'a', 'r'} & set('qux') . >>> print(z)
Anonymous Quiz
9%
{ )
22%
set( )
49%
{'q', 'r', 'x', 'u', 'b', 'a'}
19%
{'b', 'r', 'a'}