Data Science – Telegram
Data Science
7.49K subscribers
754 photos
49 videos
85 files
451 links
ارتباط با ادمین:
@Datascience
Download Telegram
Forwarded from Mahdi Nasiri
تعداد رویداد رخ داده در هر ثانیه در شبکه های اجتماعی مختلف
Forwarded from Mahdi Nasiri
اولویت نیازهای 2016 از نظر گارتنر
Forwarded from Mahdi Nasiri
10 روند برتر هوش تجاری برای 2016
http://www.kdnuggets.com/2015/12/10-business-intelligence-trends-2016.html
Forwarded from Mahdi Nasiri
این پلت فرم که بیشتر الگوریتم های عمومی یادگیری عمیق در ان وجود دارد به صورت انعطاف پذیر را پشتیبانی می کند. اسلاید زیر توضیحات بیشتر را توضیح می دهد

https://www.linkedin.com/pulse/apache-singa-distributed-deep-learning-system-marinho-de-oliveira
معرفی برترین ابزارهای کرال 👇👇

http://bigdata-madesimple.com/top-50-open-source-web-crawlers-for-data-mining/
معرفی الگوریتم های پیش بینی
Most popular Predictive Analytics, Data Mining, Data Science software

http://www.kdnuggets.com/wp-content/uploads/kdnuggets-2014-software-poll-word-cloud.jpg
مسیر انجام پروژه های داده کاوی!
مقایسه متدولوژی های مورد استفاده توسط کارشناسان داده کاوی و علم داده در پروژه کاربردی!
Forwarded from ahmad khalili
سایت datapool.ir برای دوستانی که نیاز به دیتا دارن میتونه مفید باشه.
فناوری های پوشیدنی و تحلیل پیشگویانه از مهمترین روندهای فناوری بهداشت خواهند بود
مراحل یک پروژه هوش تجاری!
Hadoop in BI
Forwarded from Mahdi Nasiri
20 سوالی که باید دانست

Explain what regularization is and why it is useful.
Which data scientists do you admire most? which startups?
How would you validate a model you created to generate a predictive model of a quantitative outcome variable using multiple regression.
Explain what precision and recall are. How do they relate to the ROC curve?
How can you prove that one improvement you've brought to an algorithm is really an improvement over not doing anything?
What is root cause analysis?
Are you familiar with pricing optimization, price elasticity, inventory management, competitive intelligence? Give examples.
What is statistical power?
Explain what resampling methods are and why they are useful. Also explain their limitations.
Is it better to have too many false positives, or too many false negatives? Explain.
What is selection bias, why is it important and how can you avoid it?
Give an example of how you would use experimental design to answer a question about user behavior.
What is the difference between "long" and "wide" format data?
What method do you use to determine whether the statistics published in an article (e.g. newspaper) are either wrong or presented to support the author's point of view, rather than correct, comprehensive factual information on a specific subject?
Explain Edward Tufte's concept of "chart junk."
How would you screen for outliers and what should you do if you find one?
How would you use either the extreme value theory, monte carlo simulations or mathematical statistics (or anything else) to correctly estimate the chance of a very rare event?
What is a recommendation engine? How does it work?
Explain what a false positive and a false negative are. Why is it important to differentiate these from each other?
Which tools do you use for visualization? What do you think of Tableau? R? SAS? (for graphs). How to efficiently represent 5 dimension in a chart (or in a video)?