Data Analyst Interview Resources – Telegram
Data Analyst Interview Resources
52K subscribers
257 photos
1 video
53 files
321 links
Join our telegram channel to learn how data analysis can reveal fascinating patterns, trends, and stories hidden within the numbers! 📊

For ads & suggestions: @love_data
Download Telegram
Quick Recap of Power BI Concepts

1️⃣ Power Query: The data transformation engine that lets you clean, reshape, and combine data before loading it into Power BI.

2️⃣ Data Model: A structure of tables, relationships, and calculated fields that supports report creation.

3️⃣ Relationships: Connections between tables that allow you to create reports using data from multiple tables.

4️⃣ DAX (Data Analysis Expressions): A formula language used for creating calculated columns, measures, and custom tables.

5️⃣ Visualizations: Graphical representations of data, such as bar charts, line charts, maps, and tables.

6️⃣ Slicers: Interactive filters added to reports to help users refine data views.

7️⃣ Measures: Calculations created using DAX that perform dynamic aggregations based on the context in your report.

8️⃣ Calculated Columns: Static columns created using DAX expressions that perform row-by-row calculations.

9️⃣ Reports: A collection of visualizations, text, and slicers that tell a story using your data.

🔟 Power BI Service: The online platform where you publish, share, and collaborate on Power BI reports and dashboards.

I have curated the best interview resources to crack Power BI Interviews 👇👇
https://news.1rj.ru/str/DataSimplifier

Hope you'll like it

Like this post if you need more content like this 👍❤️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
1
Hey guys,

Today, let’s talk about SQL conceptual questions that are often asked in data analyst interviews. These questions test not only your technical skills but also your conceptual understanding of SQL and its real-world applications.

1. What is the difference between SQL and NoSQL?

- SQL (Structured Query Language) is a relational database management system, meaning it uses tables (rows and columns) to store data.
- NoSQL databases, on the other hand, handle unstructured data and don’t rely on a schema, making them more flexible in terms of data storage and retrieval.
- Interview Tip: Don't just memorize definitions. Be prepared to explain scenarios where you’d use SQL over NoSQL, and vice versa.

2. What is the difference between INNER JOIN and OUTER JOIN?

- An INNER JOIN returns records that have matching values in both tables.
- An OUTER JOIN returns all records from one table and the matched records from the second table. If there's no match, NULL values are returned.

3. How do you optimize a SQL query for better performance?

- Indexing: Create indexes on columns used frequently in WHERE, JOIN, or GROUP BY clauses.
- Query optimization: Use appropriate WHERE clauses to reduce the data set and avoid unnecessary calculations.
- Avoid SELECT *: Always specify the columns you need to reduce the amount of data retrieved.
- Limit results: If you only need a subset of the data, use the LIMIT clause.

4. What are the different types of SQL constraints?

Constraints are used to enforce rules on data in a table. They ensure the accuracy and reliability of the data. The most common types are:

- PRIMARY KEY: Ensures each record is unique and not null.
- FOREIGN KEY: Enforces a relationship between two tables.
- UNIQUE: Ensures all values in a column are unique.
- NOT NULL: Prevents NULL values from being entered into a column.
- CHECK: Ensures a column's values meet a specific condition.

5. What is normalization? What are the different normal forms?

Normalization is the process of organizing data to reduce redundancy and improve data integrity. Here’s a quick overview of normal forms:

- 1NF (First Normal Form): Ensures that all values in a table are atomic (indivisible).
- 2NF (Second Normal Form): Ensures that the table is in 1NF and that all non-key columns are fully dependent on the primary key.
- 3NF (Third Normal Form): Ensures that the table is in 2NF and all columns are independent of each other except for the primary key.

6. What is a subquery?

A subquery is a query within another query. It's used to perform operations that need intermediate results before generating the final query.

Example:
SELECT employee_id, name
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);

In this case, the subquery calculates the average salary, and the outer query selects employees whose salary is greater than the average.

7. What is the difference between a UNION and a UNION ALL?

- UNION combines the result sets of two SELECT statements and removes duplicates.
- UNION ALL combines the result sets and includes duplicates.

8. What is the difference between WHERE and HAVING clause?

- WHERE filters rows before any groupings are made. It’s used with SELECT, INSERT, UPDATE, or DELETE statements.
- HAVING filters groups after the GROUP BY clause.

9. How would you handle NULL values in SQL?

NULL values can represent missing or unknown data. Here’s how to manage them:

- Use IS NULL or IS NOT NULL in WHERE clauses to filter null values.
- Use COALESCE() or IFNULL() to replace NULL values with default ones.

Example:
SELECT name, COALESCE(age, 0) AS age
FROM employees;


10. What is the purpose of the GROUP BY clause?

The GROUP BY clause groups rows with the same values into summary rows. It’s often used with aggregate functions like COUNT, SUM, AVG, etc.

Example:
SELECT department, COUNT(*)
FROM employees
GROUP BY department;


Here you can find SQL Interview Resources👇
https://news.1rj.ru/str/DataSimplifier

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
2
Breaking into Data Analytics doesn’t need to be complicated.

If you’re just starting out,

Here’s how to simplify your approach:

Avoid:
🚫 Jumping into advanced tools like Hadoop or Spark before mastering the basics.
🚫 Focusing only on tools, not on business problem-solving.
🚫 Collecting certificates instead of solving real problems.
🚫 Thinking you need to know everything from SQL to machine learning right away.

Instead:
Start with Excel, SQL, and one visualization tool (like Power BI or Tableau).
Learn how to clean, explore, and interpret data to solve business questions.
Understand core concepts like KPIs, dashboards, and business metrics.
Pick real datasets and analyze them with clear goals and insights.
Build a portfolio that shows you can translate data into decisions.

React ❤️ for more
2
How Data Analysts use Python 👆
2
Data Analyst Interview Questions with Answers

1. What is the difference between the RANK() and DENSE_RANK() functions?

The RANK() function in the result set defines the rank of each row within your ordered partition. If both rows have the same rank, the next number in the ranking will be the previous rank plus a number of duplicates. If we have three records at rank 4, for example, the next level indicated is 7. The DENSE_RANK() function assigns a distinct rank to each row within a partition based on the provided column value, with no gaps. If we have three records at rank 4, for example, the next level indicated is 5.

2. Explain One-hot encoding and Label Encoding. How do they affect the dimensionality of the given dataset?

One-hot encoding is the representation of categorical variables as binary vectors. Label Encoding is converting labels/words into numeric form. Using one-hot encoding increases the dimensionality of the data set. Label encoding doesn’t affect the dimensionality of the data set. One-hot encoding creates a new variable for each level in the variable whereas, in Label encoding, the levels of a variable get encoded as 1 and 0.

3. What is the shortcut to add a filter to a table in EXCEL?

The filter mechanism is used when you want to display only specific data from the entire dataset. By doing so, there is no change being made to the data. The shortcut to add a filter to a table is Ctrl+Shift+L.

4. What is DAX in Power BI?

DAX stands for Data Analysis Expressions. It's a collection of functions, operators, and constants used in formulas to calculate and return values. In other words, it helps you create new info from data you already have.

5. Define shelves and sets in Tableau?

Shelves: Every worksheet in Tableau will have shelves such as columns, rows, marks, filters, pages, and more. By placing filters on shelves we can build our own visualization structure. We can control the marks by including or excluding data.
Sets: The sets are used to compute a condition on which the dataset will be prepared. Data will be grouped together based on a condition. Fields which is responsible for grouping are known assets. For example – students having grades of more than 70%.

React ❤️ for more
2
Data Analytics Interview Questions
1
80% of people who start learning data analytics never land a job.

Not because they lack skill

but because they get stuck in "preparation mode."

I was almost one of them.

I spent months:
-Taking courses.
-Watching YouTube tutorials.
-Practicing SQL and Power BI.

But when it came time to publish a project or apply for jobs
I hesitated.

“I need to learn more first.”
“My portfolio isn’t ready.”
“Maybe next month.”

Sound familiar?

You don’t need more knowledge
you need more execution.

Data analysts who build & share projects are 3X more likely to get hired.

The best analysts aren’t the smartest.
They’re the ones who take action.

-They publish dashboards, even if they aren’t perfect.
-They post case studies, even when they feel like imposters.
-They apply for jobs before they "feel ready"

Stop overthinking.

Pick a dataset, build something, and share it today.

One messy project is worth more than 100 courses you never use.
5👍1
1. Explain the concept of transfer learning in the context of deep learning models. How can it be beneficial in practical applications?

Ans- Transfer learning involves leveraging pre-trained models on large datasets and adapting them to new, related tasks with smaller datasets. In deep learning, this is achieved by reusing the knowledge gained during the training of one model on a different, but related, task. This is particularly beneficial when the new task has limited labeled data.

Practical applications include image recognition, where a model pre-trained on a dataset like ImageNet can be fine-tuned for a specific domain. Transfer learning accelerates model convergence, requires less labeled data, and helps overcome the challenges of training deep neural networks from scratch.

2. Given a large dataset, how would you efficiently sample a representative subset for model training? Discuss the trade-offs involved.

Answer- To efficiently sample a representative subset, one can use techniques like random sampling or stratified sampling. For random sampling, simple random sampling or systematic sampling methods can be employed. For stratified sampling, data is divided into strata, and samples are randomly selected from each stratum.

Trade-offs involve the choice between biased and unbiased sampling. Random sampling may not capture rare events, while stratified sampling might introduce complexity but ensures representation. The size of the sample is also crucial; a too-small sample may not be representative, while a too-large sample may incur unnecessary computational costs.

3. How would you approach analyzing A/B test results to determine the effectiveness of a new feature on a platform like Google Search?

Answer: A/B testing involves comparing the performance of two versions (A and B) to determine the impact of a change. To analyze A/B test results:

- Define Metrics: Clearly define key metrics (e.g., click-through rate, user engagement) before the test.
- Random Assignment: Ensure random assignment of users to control (A) and experimental (B) groups.
- Statistical Significance: Use statistical tests (e.g., t-test) to determine if differences between groups are statistically significant.
- Practical Significance: Consider the practical significance of results to assess real-world impact.
- Segmentation: Analyze results across different user segments for nuanced insights.


4. You have access to search query logs. How would you identify and address potential biases in the search results?

Answer: To identify and address biases in search results:

- Analyze Demographics: Examine user demographics to identify biases related to age, gender, or location.
- Query Intent: Understand user query intent and ensure diverse queries are well-represented.
- Evaluate Results: Assess the diversity of results to avoid favoring specific perspectives.
- User Feedback: Gather feedback from users to identify biased or inappropriate results.
- Continuous Monitoring: Implement continuous monitoring and iterate on algorithms to minimize biases.
2
📊🚀A beginner's roadmap for learning SQL:

🔹Understand Basics:
Learn what SQL is and its purpose in managing relational databases.
Understand basic database concepts like tables, rows, columns, and relationships.

🔹Learn SQL Syntax:
Familiarize yourself with SQL syntax for common commands like SELECT, INSERT, UPDATE, DELETE.
Understand clauses like WHERE, ORDER BY, GROUP BY, and JOIN.

🔹Setup a Database:
Install a relational database management system (RDBMS) like MySQL, SQLite, or PostgreSQL.
Practice creating databases, tables, and inserting data.

🔹Retrieve Data (SELECT):
Learn to retrieve data from a database using SELECT statements.
Practice filtering data using WHERE clause and sorting using ORDER BY.

🔹Modify Data (INSERT, UPDATE, DELETE):
Understand how to insert new records, update existing ones, and delete data.
Be cautious with DELETE to avoid unintentional data loss.

🔹Working with Functions:
Explore SQL functions like COUNT, AVG, SUM, MAX, MIN for data analysis.
Understand string functions, date functions, and mathematical functions.

🔹Data Filtering and Sorting:
Learn advanced filtering techniques using AND, OR, and IN operators.
Practice sorting data using multiple columns.

🔹Table Relationships (JOIN):
Understand the concept of joining tables to retrieve data from multiple tables.
Learn about INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.

🔹Grouping and Aggregation:
Explore GROUP BY clause to group data based on specific columns.
Understand aggregate functions for summarizing data (SUM, AVG, COUNT).

🔹Subqueries:
Learn to use subqueries to perform complex queries.
Understand how to use subqueries in SELECT, WHERE, and FROM clauses.

🔹Indexes and Optimization:
Gain knowledge about indexes and their role in optimizing queries.
Understand how to optimize SQL queries for better performance.

🔹Transactions and ACID Properties:
Learn about transactions and the ACID properties (Atomicity, Consistency, Isolation, Durability).
Understand how to use transactions to maintain data integrity.

🔹Normalization:
Understand the basics of database normalization to design efficient databases.
Learn about 1NF, 2NF, 3NF, and BCNF.

🔹Backup and Recovery:
Understand the importance of database backups.
Learn how to perform backups and recovery operations.

🔹Practice and Projects:
Apply your knowledge through hands-on projects.
Practice on platforms like LeetCode, HackerRank, or build your own small database-driven projects.

👀👍Remember to practice regularly and build real-world projects to reinforce your learning. Happy coding!
1
Data Analyst Interview Questions
[Python, SQL, PowerBI]

1. Is indentation required in python?
Ans:
Indentation is necessary for Python. It specifies a block of code. All code within loops, classes, functions, etc is specified within an indented block. It is usually done using four space characters. If your code is not indented necessarily, it will not execute accurately and will throw errors as well.

2. What are Entities and Relationships?
Ans:
Entity:
An entity can be a real-world object that can be easily identifiable. For example, in a college database, students, professors, workers, departments, and projects can be referred to as entities.

Relationships: Relations or links between entities that have something to do with each other. For example – The employee’s table in a company’s database can be associated with the salary table in the same database.

3. What are Aggregate and Scalar functions?
Ans:
An aggregate function performs operations on a collection of values to return a single scalar value. Aggregate functions are often used with the GROUP BY and HAVING clauses of the SELECT statement. A scalar function returns a single value based on the input value.

4. What are Custom Visuals in Power BI?
Ans:
Custom Visuals are like any other visualizations, generated using Power BI. The only difference is that it develops the custom visuals using a custom SDK. The languages like JQuery and JavaScript are used to create custom visuals in Power BI

ENJOY LEARNING 👍👍
3👌1
1. What are the ways to detect outliers?

Outliers are detected using two methods:

Box Plot Method: According to this method, the value is considered an outlier if it exceeds or falls below 1.5*IQR (interquartile range), that is, if it lies above the top quartile (Q3) or below the bottom quartile (Q1).

Standard Deviation Method: According to this method, an outlier is defined as a value that is greater or lower than the mean ± (3*standard deviation).


2. What is a Recursive Stored Procedure?

A stored procedure that calls itself until a boundary condition is reached, is called a recursive stored procedure. This recursive function helps the programmers to deploy the same set of code several times as and when required.


3. What is the shortcut to add a filter to a table in EXCEL?

The filter mechanism is used when you want to display only specific data from the entire dataset. By doing so, there is no change being made to the data. The shortcut to add a filter to a table is Ctrl+Shift+L.

4. What is DAX in Power BI?

DAX stands for Data Analysis Expressions. It's a collection of functions, operators, and constants used in formulas to calculate and return values. In other words, it helps you create new info from data you already have.
4
SQL Basics for Data Analysts

SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.

1️⃣ Understanding Databases & Tables

Databases store structured data in tables.

Tables contain rows (records) and columns (fields).

Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).

2️⃣ Basic SQL Commands

Let's start with some fundamental queries:

🔹 SELECT – Retrieve Data

SELECT * FROM employees; -- Fetch all columns from 'employees' table SELECT name, salary FROM employees; -- Fetch specific columns 

🔹 WHERE – Filter Data

SELECT * FROM employees WHERE department = 'Sales'; -- Filter by department SELECT * FROM employees WHERE salary > 50000; -- Filter by salary 


🔹 ORDER BY – Sort Data

SELECT * FROM employees ORDER BY salary DESC; -- Sort by salary (highest first) SELECT name, hire_date FROM employees ORDER BY hire_date ASC; -- Sort by hire date (oldest first) 


🔹 LIMIT – Restrict Number of Results

SELECT * FROM employees LIMIT 5; -- Fetch only 5 rows SELECT * FROM employees WHERE department = 'HR' LIMIT 10; -- Fetch first 10 HR employees 


🔹 DISTINCT – Remove Duplicates

SELECT DISTINCT department FROM employees; -- Show unique departments 


Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.

You can find free SQL Resources here
👇👇
https://news.1rj.ru/str/mysqldata

Like this post if you want me to continue covering all the topics! 👍❤️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)

#sql
1