Data Analyst Interview Resources – Telegram
Data Analyst Interview Resources
52K subscribers
257 photos
1 video
53 files
321 links
Join our telegram channel to learn how data analysis can reveal fascinating patterns, trends, and stories hidden within the numbers! 📊

For ads & suggestions: @love_data
Download Telegram
1. What are the ways to detect outliers?

Outliers are detected using two methods:

Box Plot Method: According to this method, the value is considered an outlier if it exceeds or falls below 1.5*IQR (interquartile range), that is, if it lies above the top quartile (Q3) or below the bottom quartile (Q1).

Standard Deviation Method: According to this method, an outlier is defined as a value that is greater or lower than the mean ± (3*standard deviation).


2. What is a Recursive Stored Procedure?

A stored procedure that calls itself until a boundary condition is reached, is called a recursive stored procedure. This recursive function helps the programmers to deploy the same set of code several times as and when required.


3. What is the shortcut to add a filter to a table in EXCEL?

The filter mechanism is used when you want to display only specific data from the entire dataset. By doing so, there is no change being made to the data. The shortcut to add a filter to a table is Ctrl+Shift+L.

4. What is DAX in Power BI?

DAX stands for Data Analysis Expressions. It's a collection of functions, operators, and constants used in formulas to calculate and return values. In other words, it helps you create new info from data you already have.
4
SQL Basics for Data Analysts

SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.

1️⃣ Understanding Databases & Tables

Databases store structured data in tables.

Tables contain rows (records) and columns (fields).

Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).

2️⃣ Basic SQL Commands

Let's start with some fundamental queries:

🔹 SELECT – Retrieve Data

SELECT * FROM employees; -- Fetch all columns from 'employees' table SELECT name, salary FROM employees; -- Fetch specific columns 

🔹 WHERE – Filter Data

SELECT * FROM employees WHERE department = 'Sales'; -- Filter by department SELECT * FROM employees WHERE salary > 50000; -- Filter by salary 


🔹 ORDER BY – Sort Data

SELECT * FROM employees ORDER BY salary DESC; -- Sort by salary (highest first) SELECT name, hire_date FROM employees ORDER BY hire_date ASC; -- Sort by hire date (oldest first) 


🔹 LIMIT – Restrict Number of Results

SELECT * FROM employees LIMIT 5; -- Fetch only 5 rows SELECT * FROM employees WHERE department = 'HR' LIMIT 10; -- Fetch first 10 HR employees 


🔹 DISTINCT – Remove Duplicates

SELECT DISTINCT department FROM employees; -- Show unique departments 


Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.

You can find free SQL Resources here
👇👇
https://news.1rj.ru/str/mysqldata

Like this post if you want me to continue covering all the topics! 👍❤️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)

#sql
1
𝐒𝐐𝐋 𝐂𝐚𝐬𝐞 𝐒𝐭𝐮𝐝𝐢𝐞𝐬 𝐟𝐨𝐫 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰:

Join for more: https://news.1rj.ru/str/sqlanalyst

1. Danny’s Diner:
Restaurant analytics to understand the customer orders pattern.
Link: https://8weeksqlchallenge.com/case-study-1/

2. Pizza Runner
Pizza shop analytics to optimize the efficiency of the operation
Link: https://8weeksqlchallenge.com/case-study-2/

3. Foodie Fie
Subnoscription-based food content platform
Link: https://lnkd.in/gzB39qAT

4. Data Bank: That’s money
Analytics based on customer activities with the digital bank
Link: https://lnkd.in/gH8pKPyv

5. Data Mart: Fresh is Best
Analytics on Online supermarket
Link: https://lnkd.in/gC5bkcDf

6. Clique Bait: Attention capturing
Analytics on the seafood industry
Link: https://lnkd.in/ggP4JiYG

7. Balanced Tree: Clothing Company
Analytics on the sales performance of clothing store
Link: https://8weeksqlchallenge.com/case-study-7

8. Fresh segments: Extract maximum value
Analytics on online advertising
Link: https://8weeksqlchallenge.com/case-study-8
4
Data Analyst Interview Questions 👇

1.How to create filters in Power BI?

Filters are an integral part of Power BI reports. They are used to slice and dice the data as per the dimensions we want. Filters are created in a couple of ways.

Using Slicers: A slicer is a visual under Visualization Pane. This can be added to the design view to filter our reports. When a slicer is added to the design view, it requires a field to be added to it. For example- Slicer can be added for Country fields. Then the data can be filtered based on countries.
Using Filter Pane: The Power BI team has added a filter pane to the reports, which is a single space where we can add different fields as filters. And these fields can be added depending on whether you want to filter only one visual(Visual level filter), or all the visuals in the report page(Page level filters), or applicable to all the pages of the report(report level filters)


2.How to sort data in Power BI?

Sorting is available in multiple formats. In the data view, a common sorting option of alphabetical order is there. Apart from that, we have the option of Sort by column, where one can sort a column based on another column. The sorting option is available in visuals as well. Sort by ascending and descending option by the fields and measure present in the visual is also available.


3.How to convert pdf to excel?

Open the PDF document you want to convert in XLSX format in Acrobat DC.
Go to the right pane and click on the “Export PDF” option.
Choose spreadsheet as the Export format.
Select “Microsoft Excel Workbook.”
Now click “Export.”
Download the converted file or share it.


4. How to enable macros in excel?

Click the file tab and then click “Options.”
A dialog box will appear. In the “Excel Options” dialog box, click on the “Trust Center” and then “Trust Center Settings.”
Go to the “Macro Settings” and select “enable all macros.”
Click OK to apply the macro settings.
1
Important Excel, Tableau, Statistics, SQL related Questions with answers

1. What are the common problems that data analysts encounter during analysis?

The common problems steps involved in any analytics project are:

Handling duplicate data
Collecting the meaningful right data at the right time
Handling data purging and storage problems
Making data secure and dealing with compliance issues

2. Explain the Type I and Type II errors in Statistics?

In Hypothesis testing, a Type I error occurs when the null hypothesis is rejected even if it is true. It is also known as a false positive.

A Type II error occurs when the null hypothesis is not rejected, even if it is false. It is also known as a false negative.

3. How do you make a dropdown list in MS Excel?

First, click on the Data tab that is present in the ribbon.
Under the Data Tools group, select Data Validation.
Then navigate to Settings > Allow > List.
Select the source you want to provide as a list array.

4. How do you subset or filter data in SQL?

To subset or filter data in SQL, we use WHERE and HAVING clauses which give us an option of including only the data matching certain conditions.

5. What is a Gantt Chart in Tableau?

A Gantt chart in Tableau depicts the progress of value over the period, i.e., it shows the duration of events. It consists of bars along with the time axis. The Gantt chart is mostly used as a project management tool where each bar is a measure of a task in the project
1
Data Analyst Interview Questions

1. What do Tableau's sets and groups mean?

Data is grouped using sets and groups according to predefined criteria. The primary distinction between the two is that although a set can have only two options—either in or out—a group can divide the dataset into several groups. A user should decide which group or sets to apply based on the conditions.

2.What in Excel is a macro?

An Excel macro is an algorithm or a group of steps that helps automate an operation by capturing and replaying the steps needed to finish it. Once the steps have been saved, you may construct a Macro that the user can alter and replay as often as they like.

Macro is excellent for routine work because it also gets rid of mistakes. Consider the scenario when an account manager needs to share reports about staff members who owe the company money. If so, it can be automated by utilising a macro and making small adjustments each month as necessary.


3.Gantt chart in Tableau

A Tableau Gantt chart illustrates the duration of events as well as the progression of value across the period. Along with the time axis, it has bars. The Gantt chart is primarily used as a project management tool, with each bar representing a project job.

4.In Microsoft Excel, how do you create a drop-down list?

Start by selecting the Data tab from the ribbon.
Select Data Validation from the Data Tools group.
Go to Settings > Allow > List next.
Choose the source you want to offer in the form of a list array.
1
1. What is the difference between the RANK() and DENSE_RANK() functions?

The RANK() function in the result set defines the rank of each row within your ordered partition. If both rows have the same rank, the next number in the ranking will be the previous rank plus a number of duplicates. If we have three records at rank 4, for example, the next level indicated is 7. The DENSE_RANK() function assigns a distinct rank to each row within a partition based on the provided column value, with no gaps. If we have three records at rank 4, for example, the next level indicated is 5.

2. Explain One-hot encoding and Label Encoding. How do they affect the dimensionality of the given dataset?

One-hot encoding is the representation of categorical variables as binary vectors. Label Encoding is converting labels/words into numeric form. Using one-hot encoding increases the dimensionality of the data set. Label encoding doesn’t affect the dimensionality of the data set. One-hot encoding creates a new variable for each level in the variable whereas, in Label encoding, the levels of a variable get encoded as 1 and 0.

3. Explain the Difference Between Tableau Worksheet, Dashboard, Story, and Workbook in Tableau?

Tableau uses a workbook and sheet file structure, much like Microsoft Excel.
A workbook contains sheets, which can be a worksheet, dashboard, or a story.
A worksheet contains a single view along with shelves, legends, and the Data pane.
A dashboard is a collection of views from multiple worksheets.
A story contains a sequence of worksheets or dashboards that work together to convey information.

4. How can you split a column into 2 or more columns?

You can split a column into 2 or more columns by following the below steps:
1. Select the cell that you want to split. Then, navigate to the Data tab, after that, select Text to Columns. 2. Select the delimiter. 3. Choose the column data format and select the destination you want to display the split. 4. The final output will look like below where the text is split into multiple columns.

5. Do you wanna make your career in Data Science & Analytics but don't know how to start ?

https://news.1rj.ru/str/sqlspecialist/94

Here is a complete roadmap from scratch that will make you technically strong enough to crack any Data Analyst and also learn Pro Career Growth Hacks to land on your Dream Job.
1
Must Study: These are the important Questions for Data Analyst



SQL
1. How do you handle NULL values in SQL queries, and why is it important?
2. What is the difference between INNER JOIN and OUTER JOIN, and when would you use each?
3. How do you implement transaction control in SQL Server?

Excel
1. How do you use pivot tables to analyze large datasets in Excel?
2. What are Excel's built-in functions for statistical analysis, and how do you use them?
3. How do you create interactive dashboards in Excel?

Power BI
1. How do you optimize Power BI reports for performance?
2. What is the role of DAX (Data Analysis Expressions) in Power BI, and how do you use it?
3. How do you handle real-time data streaming in Power BI?

Python
1. How do you use Pandas for data manipulation, and what are some advanced features?
2. How do you implement machine learning models in Python, from data preparation to deployment?
3. What are the best practices for handling large datasets in Python?

Data Visualization
1. How do you choose the right visualization technique for different types of data?
2. What is the importance of color theory in data visualization?
3. How do you use tools like Tableau or Power BI for advanced data storytelling?

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope this helps you 😊
1
Excel Cheat Sheet 📔

This Excel cheatsheet is designed to be your quick reference guide for using Microsoft Excel efficiently.

1. Basic Functions
   - SUM: =SUM(range)
   - AVERAGE: =AVERAGE(range)
   - COUNT: =COUNT(range)
   - MAX: =MAX(range)
   - MIN: =MIN(range)

2. Text Functions
   - CONCATENATE: =CONCATENATE(text1, text2, ...) or =TEXTJOIN(delimiter, ignore_empty, text1, text2, ...)
   - LEFT: =LEFT(text, num_chars)
   - RIGHT: =RIGHT(text, num_chars)
   - MID: =MID(text, start_num, num_chars)
   - TRIM: =TRIM(text)

3. Logical Functions
   - IF: =IF(condition, true_value, false_value)
   - AND: =AND(condition1, condition2, ...)
   - OR: =OR(condition1, condition2, ...)
   - NOT: =NOT(condition)

4. Lookup Functions
   - VLOOKUP: =VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])
   - HLOOKUP: =HLOOKUP(lookup_value, table_array, row_index_num, [range_lookup])
   - INDEX: =INDEX(array, row_num, [column_num])
   - MATCH: =MATCH(lookup_value, lookup_array, [match_type])

5. Data Sorting & Filtering
   - Sort: *Data > Sort*
   - Filter: *Data > Filter*
   - Advanced Filter: *Data > Advanced*

6. Conditional Formatting
   - Apply Formatting: *Home > Conditional Formatting > New Rule*
   - Highlight Cells: *Home > Conditional Formatting > Highlight Cells Rules*

7. Charts and Graphs
   - Insert Chart: *Insert > Select Chart Type*
   - Customize Chart: *Chart Tools > Design/Format*

8. PivotTables
   - Create PivotTable: *Insert > PivotTable*
   - Refresh PivotTable: *Right-click on PivotTable > Refresh*

9. Data Validation
   - Set Validation: *Data > Data Validation*
   - List: *Allow: List > Source: range or items*

10. Protecting Data
    - Protect Sheet: *Review > Protect Sheet*
    - Protect Workbook: *Review > Protect Workbook*

11. Shortcuts
    - Copy: Ctrl + C
    - Paste: Ctrl + V
    - Undo: Ctrl + Z
    - Redo: Ctrl + Y
    - Save: Ctrl + S

12. Printing Options
    - Print Area: *Page Layout > Print Area > Set Print Area*
    - Page Setup: *Page Layout > Page Setup*

Checklist for Data Analyst: https://dataanalytics.beehiiv.com/p/data

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://news.1rj.ru/str/DataSimplifier

Like for more Interview Resources ♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
4
What seperates a good 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 from a great one?

The journey to becoming an exceptional data analyst requires mastering a blend of technical and soft skills.

Technical skills:
- Querying Data with SQL
- Data Visualization (Tableau/PowerBI)
- Data Storytelling and Reporting
- Data Exploration and Analytics
- Data Modeling

Soft Skills:
- Problem Solving
- Communication
- Business Acumen
- Curiosity
- Critical Thinking
- Learning Mindset

But how do you develop these soft skills?

◆ Tackle real-world data projects or case studies. The more complex, the better.

◆ Practice explaining your analysis to non-technical audiences. If they understand, you’ve nailed it!

◆ Learn how industries use data for decision-making. Align your analysis with business outcomes.

◆ Stay curious, ask 'why,' and dig deeper into your data. Don’t settle for surface-level insights.

◆ Keep evolving. Attend webinars, read books, or engage with industry experts regularly.
2
Excel Formulas Every Analyst Should Know

SUM(): Adds a range of numbers.

AVERAGE(): Calculates the average of a range.

VLOOKUP(): Searches for a value in the first column and returns a corresponding value.

HLOOKUP(): Searches for a value in the first row and returns a corresponding value.

INDEX(): Returns the value of a cell in a given range based on row and column numbers.

MATCH(): Finds the position of a value in a range.

IF(): Performs a logical test and returns one value for TRUE, another for FALSE.

COUNTIF(): Counts cells that meet a specific condition.

CONCATENATE(): Joins two or more text strings together.

LEFT()/RIGHT(): Extracts a specified number of characters from the left or right of a text string.

Excel Resources: t.me/excel_data

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this 👍♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
1👏1
Important Excel, Tableau, Statistics, SQL related Questions with answers

1. What are the common problems that data analysts encounter during analysis?

The common problems steps involved in any analytics project are:

Handling duplicate data
Collecting the meaningful right data at the right time
Handling data purging and storage problems
Making data secure and dealing with compliance issues

2. Explain the Type I and Type II errors in Statistics?

In Hypothesis testing, a Type I error occurs when the null hypothesis is rejected even if it is true. It is also known as a false positive.

A Type II error occurs when the null hypothesis is not rejected, even if it is false. It is also known as a false negative.

3. How do you make a dropdown list in MS Excel?

First, click on the Data tab that is present in the ribbon.
Under the Data Tools group, select Data Validation.
Then navigate to Settings > Allow > List.
Select the source you want to provide as a list array.

4. How do you subset or filter data in SQL?

To subset or filter data in SQL, we use WHERE and HAVING clauses which give us an option of including only the data matching certain conditions.

5. What is a Gantt Chart in Tableau?

A Gantt chart in Tableau depicts the progress of value over the period, i.e., it shows the duration of events. It consists of bars along with the time axis. The Gantt chart is mostly used as a project management tool where each bar is a measure of a task in the project
1👍1
1. What is the difference between the RANK() and DENSE_RANK() functions?

The RANK() function in the result set defines the rank of each row within your ordered partition. If both rows have the same rank, the next number in the ranking will be the previous rank plus a number of duplicates. If we have three records at rank 4, for example, the next level indicated is 7. The DENSE_RANK() function assigns a distinct rank to each row within a partition based on the provided column value, with no gaps. If we have three records at rank 4, for example, the next level indicated is 5.

2. Explain One-hot encoding and Label Encoding. How do they affect the dimensionality of the given dataset?

One-hot encoding is the representation of categorical variables as binary vectors. Label Encoding is converting labels/words into numeric form. Using one-hot encoding increases the dimensionality of the data set. Label encoding doesn’t affect the dimensionality of the data set. One-hot encoding creates a new variable for each level in the variable whereas, in Label encoding, the levels of a variable get encoded as 1 and 0.

3. What is the shortcut to add a filter to a table in EXCEL?

The filter mechanism is used when you want to display only specific data from the entire dataset. By doing so, there is no change being made to the data. The shortcut to add a filter to a table is Ctrl+Shift+L.

4. What is DAX in Power BI?

DAX stands for Data Analysis Expressions. It's a collection of functions, operators, and constants used in formulas to calculate and return values. In other words, it helps you create new info from data you already have.

5. Define shelves and sets in Tableau?

Shelves: Every worksheet in Tableau will have shelves such as columns, rows, marks, filters, pages, and more. By placing filters on shelves we can build our own visualization structure. We can control the marks by including or excluding data.
Sets: The sets are used to compute a condition on which the dataset will be prepared. Data will be grouped together based on a condition. Fields which is responsible for grouping are known assets. For example – students having grades of more than 70%.
2
20 Must-Know Statistics Questions for Data Analyst and Business Analyst Roles (With Detailed Answers)

1. What is the difference between denoscriptive and inferential statistics?

Denoscriptive statistics summarize and organize data (e.g., mean, median, mode).

Inferential statistics make predictions or inferences about a population based on a sample (e.g., hypothesis testing, confidence intervals).


2. Explain mean, median, and mode and when to use each.

Mean is the average; use when data is symmetrically distributed.

Median is the middle value; best when data has outliers.

Mode is the most frequent value; useful for categorical data.


3. What is standard deviation, and why is it important?

It measures data spread around the mean. A low value = less variability; high value = more spread. Important for understanding consistency and risk.


4. Define correlation vs. causation with examples.

Correlation: Two variables move together but don't cause each other (e.g., ice cream sales and drowning).

Causation: One variable directly affects another (e.g., smoking causes lung cancer).


5. What is a p-value, and how do you interpret it?

P-value measures the probability of observing results given that the null hypothesis is true. A small p-value (typically < 0.05) suggests rejecting the null.


6. Explain the concept of confidence intervals.

A range of values used to estimate a population parameter. A 95% CI means there's a 95% chance the true value falls within the range.


7. What are outliers, and how can you handle them?

Outliers are extreme values differing significantly from others. Handle using:

Removal (if due to error)

Transformation

Capping (e.g., winsorizing)



8. When would you use a t-test vs. a z-test?

T-test: Small samples (n < 30) and unknown population standard deviation.

Z-test: Large samples and known standard deviation.


9. What is the Central Limit Theorem (CLT), and why is it important?

CLT states that the sampling distribution of the sample mean approaches a normal distribution as sample size grows, regardless of population distribution. Essential for inference.


10. Explain the difference between population and sample.

Population: Entire group of interest.

Sample: Subset used for analysis. Inference is made from the sample to the population.


11. What is regression analysis, and what are its key assumptions?

Predicts a dependent variable using one or more independent variables.

Assumptions: Linearity, independence, homoscedasticity, no multicollinearity, normality of residuals.


12. How do you calculate probability, and why does it matter in analytics?

Probability = (Favorable outcomes) / (Total outcomes).

Critical for risk estimation, decision-making, and predictions.


13. Explain the concept of Bayes’ Theorem with a practical example.

Bayes’ updates the probability of an event based on new evidence:

P(A|B) = [P(B|A) * P(A)] / P(B)


Example: Calculating disease probability given a positive test result.


14. What is an ANOVA test, and when should it be used?

ANOVA (Analysis of Variance) compares means across 3+ groups to see if at least one differs.

Use when comparing more than two groups.


15. Define skewness and kurtosis in a dataset.

Skewness: Measure of asymmetry (positive = right-skewed, negative = left).

Kurtosis: Measure of tail thickness (high kurtosis = heavy tails, outliers).


16. What is the difference between parametric and non-parametric tests?

Parametric: Assumes data follows a distribution (e.g., t-test).

Non-parametric: No assumptions; use with skewed or ordinal data (e.g., Mann-Whitney U).


17. What are Type I and Type II errors in hypothesis testing?

Type I error: False positive (rejecting a true null).

Type II error: False negative (failing to reject a false null).


18. How do you handle missing data in a dataset?

Methods:

Deletion (listwise or pairwise)

Imputation (mean, median, mode, regression)

Advanced: KNN, MICE
1👍1
SQL can be simple—if you learn it the smart way..



If you’re aiming to become a data analyst, mastering SQL is non-negotiable.
Here’s a smart roadmap to ace it:

1. Basics First: Understand data types, simple queries (SELECT, FROM, WHERE). Master basic filtering.

2. Joins & Relationships: Dive into INNER, LEFT, RIGHT joins. Practice combining tables to extract meaningful insights.

3. Aggregations & Functions: Get comfortable with COUNT, SUM, AVG, MAX, GROUP BY, and HAVING clauses. These are essential for summarizing data.

4. Subqueries & Nested Queries: Learn how to query within queries. This is powerful for handling complex datasets.

5. Window Functions: Explore ranking, cumulative sums, and sliding windows to work with running totals and moving averages.

6. Optimization: Study indexing and query optimization for faster, more efficient queries.

7. Real-World Scenarios: Apply your SQL knowledge to solve real-world business problems.

The journey may seem tough, but each step sharpens your skills and brings you closer to data analysis excellence. Stay consistent, practice regularly, and let SQL become your superpower! 💪

Here you can find essential SQL Interview Resources👇
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Like this post if you need more 👍❤️

Hope it helps :)
5
Some practical interview questions for an entry-level data analyst role in Power BI:

•  Data Import Scenario: Describe how you would import data from various sources (Excel,SQL Server, CSV) into Power BI.

•  Data Cleaning Exercise: In Power BI, how would you handle a dataset with missing values and inconsistent formats to prepare it for analysis?

•  Handling Large Datasets: If you're working with a very large dataset in Power BI that is causing performance issues, what strategies would you use to optimize the data processing?

•  Calculated Columns and Measures: Explain how you would use calculated columns and measures in Power BI to analyze year-over-year growth.

•  Data Modeling Case: You have sales data in one table and customer data in another. How would you create a data model in Power BI to analyze customer purchase behavior?

•  Visualizations Task: Describe your approach to visualizing sales data in Power BI to highlight trends over time across different product categories.

•  Dashboard Optimization: A Power BI dashboard is loading slowly. What steps would you take to diagnose and improve its performance?

•  Data Refresh Scheduling: How would you set up and manage automatic data refreshes for a weekly sales report in Power BI?

•  Row-Level Security: How would you implement user-level security in Power BI for a report that needs different access levels for various users?

•  Troubleshooting a DAX Calculation: If a DAX formula in Power BI is not returning the expected results, how would you go about troubleshooting it?

•  Integration with Other Tools: Describe a scenario where you integrated Power BI with another tool or service (like Excel, Azure, or a web API).

•  Interactive Reports Creation: How would you design a Power BI report that allows user interaction, such as using slicers or drill-down features?

•  Adapting to Data Source Changes: If there are structural changes in a primary data source (like addition or removal of columns), how would you update your Power BI reports and dashboards?

•  Sharing Reports: Explain how you would share a report with your team and set up access controls using Power BI Service.
•  SQL Queries in Power BI: How do you use SQL queries in Power BI for advanced data transformation or analysis?

•  Error Handling in Data Sources: How do you manage and resolve errors in data sources or calculations in Power BI?

•  Custom Visuals Usage: Have you used custom visuals in Power BI? Describe the scenario and the benefit

•  Collaboration in Power BI Projects: Discuss how you have worked with others on a Power BI project. What collaboration tools or features within Power BI did you utilize?

•  Performance Tuning: What steps do you take to ensure your Power BI reports are performing optimally when dealing with large datasets or complex calculations?

Power BI Interviews 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope you'll like it

Like this post if you need more resources like this 👍❤️
2
Common Requirements for data analyst role 👇

👉 Must be proficient in writing complex SQL Queries.

👉 Understand business requirements in BI context and design data models to transform raw data into meaningful insights.

👉 Connecting data sources, importing data, and transforming data for Business intelligence.

👉 Strong working knowledge in Excel and visualization tools like PowerBI, Tableau or QlikView

👉 Developing visual reports, KPI scorecards, and dashboards using Power BI desktop.

Nowadays, recruiters primary focus on SQL & BI skills for data analyst roles. So try practicing SQL & create some BI projects using Tableau or Power BI.

Here are some essential WhatsApp Channels with important resources:

❯ Jobs ➟ https://whatsapp.com/channel/0029Vaxjq5a4dTnKNrdeiZ0J

❯ SQL ➟ https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

❯ Power BI ➟ https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

❯ Data Analysts ➟ https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

❯ Python ➟ https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

I am planning to come up with interview series as well to share some essential questions based on my experience in data analytics field.

Like this post if you want me to start the interview series 👍❤️

Hope it helps :)
3👍1
Step-by-step guide to become a Data Analyst in 2025📊

1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.

2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.

3. Get Formal Education or Certification:
A bachelor’s degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.

4. Build Hands-on Experience:
Work on real-world projects—use Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.

5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.

6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detail—these are just as important as technical skills.

7. Apply for Entry-Level Jobs:
Look for roles like “Junior Data Analyst” or “Business Analyst.” Tailor your resume to highlight your skills and portfolio.

8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.

React ❤️ for more
1
SQL Interview Questions with Answers

1. How to change a table name in SQL?
This is the command to change a table name in SQL:
ALTER TABLE table_name
RENAME TO new_table_name;
We will start off by giving the keywords ALTER TABLE, then we will follow it up by giving the original name of the table, after that, we will give in the keywords RENAME TO and finally, we will give the new table name.

2. How to use LIKE in SQL?
The LIKE operator checks if an attribute value matches a given string pattern. Here is an example of LIKE operator
SELECT * FROM employees WHERE first_name like ‘Steven’;
With this command, we will be able to extract all the records where the first name is like “Steven”.

3. If we drop a table, does it also drop related objects like constraints, indexes, columns, default, views and sorted procedures?
Yes, SQL server drops all related objects, which exists inside a table like constraints, indexes, columns, defaults etc. But dropping a table will not drop views and sorted procedures as they exist outside the table.

4. Explain SQL Constraints.
SQL Constraints are used to specify the rules of data type in a table. They can be specified while creating and altering the table. The following are the constraints in SQL: NOT NULL CHECK DEFAULT UNIQUE PRIMARY KEY FOREIGN KEY

React ❤️ for more
5
Complete Syllabus for Data Analytics interview:

SQL:
1. Basic
  - SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
  - Basic JOINS (INNER, LEFT, RIGHT, FULL)
  - Creating and using simple databases and tables

2. Intermediate
  - Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
  - Subqueries and nested queries
  - Common Table Expressions (WITH clause)
  - CASE statements for conditional logic in queries

3. Advanced
  - Advanced JOIN techniques (self-join, non-equi join)
  - Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
  - optimization with indexing
  - Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Basic
  - Syntax, variables, data types (integers, floats, strings, booleans)
  - Control structures (if-else, for and while loops)
  - Basic data structures (lists, dictionaries, sets, tuples)
  - Functions, lambda functions, error handling (try-except)
  - Modules and packages

2. Pandas & Numpy
  - Creating and manipulating DataFrames and Series
  - Indexing, selecting, and filtering data
  - Handling missing data (fillna, dropna)
  - Data aggregation with groupby, summarizing data
  - Merging, joining, and concatenating datasets

3. Basic Visualization
  - Basic plotting with Matplotlib (line plots, bar plots, histograms)
  - Visualization with Seaborn (scatter plots, box plots, pair plots)
  - Customizing plots (sizes, labels, legends, color palettes)
  - Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Basic
  - Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
  - Introduction to charts and basic data visualization
  - Data sorting and filtering
  - Conditional formatting

2. Intermediate
  - Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
  - PivotTables and PivotCharts for summarizing data
  - Data validation tools
  - What-if analysis tools (Data Tables, Goal Seek)

3. Advanced
  - Array formulas and advanced functions
  - Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
  - Dynamic charts and interactive dashboards

Power BI:
1. Data Modeling
  - Importing data from various sources
  - Creating and managing relationships between different datasets
  - Data modeling basics (star schema, snowflake schema)

2. Data Transformation
  - Using Power Query for data cleaning and transformation
  - Advanced data shaping techniques
  - Calculated columns and measures using DAX

3. Data Visualization and Reporting
  - Creating interactive reports and dashboards
  - Visualizations (bar, line, pie charts, maps)
  - Publishing and sharing reports, scheduling data refreshes

Statistics Fundamentals:
Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
1
𝗔𝗰𝗲 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝘄𝗶𝘁𝗵 𝗧𝗵𝗲𝘀𝗲 𝗠𝘂𝘀𝘁-𝗞𝗻𝗼𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀! 🔥

Are you preparing for a 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄? Hiring managers don’t just want to hear your answers—they want to know if you truly understand data.

Here are 𝗳𝗿𝗲𝗾𝘂𝗲𝗻𝘁𝗹𝘆 𝗮𝘀𝗸𝗲𝗱 𝗾𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 (and what they really mean):

📌 "𝗧𝗲𝗹𝗹 𝗺𝗲 𝗮𝗯𝗼𝘂𝘁 𝘆𝗼𝘂𝗿𝘀𝗲𝗹𝗳."

🔍 What they’re really asking: Are you relevant for this role?

Keep it concise—highlight your experience, tools (SQL, Power BI, etc.), and a key impact you made.

📌 "𝗛𝗼𝘄 𝗱𝗼 𝘆𝗼𝘂 𝗵𝗮𝗻𝗱𝗹𝗲 𝗺𝗲𝘀𝘀𝘆 𝗱𝗮𝘁𝗮?"

🔍 What they’re really asking: Do you panic when you see missing values?

Show your structured approach—identify issues, clean with Pandas/SQL, and document your process.

📌 "𝗛𝗼𝘄 𝗱𝗼 𝘆𝗼𝘂 𝗮𝗽𝗽𝗿𝗼𝗮𝗰𝗵 𝗮 𝗱𝗮𝘁𝗮 𝗮𝗻𝗮𝗹𝘆𝘀𝗶𝘀 𝗽𝗿𝗼𝗷𝗲𝗰𝘁?"

🔍 What they’re really asking: Do you have a methodology, or do you just wing it?

Use a structured approach: Define business needs → Clean & explore data → Generate insights → Present effectively.

📌 "𝗖𝗮𝗻 𝘆𝗼𝘂 𝗲𝘅𝗽𝗹𝗮𝗶𝗻 𝗮 𝗰𝗼𝗺𝗽𝗹𝗲𝘅 𝗰𝗼𝗻𝗰𝗲𝗽𝘁 𝘁𝗼 𝗮 𝗻𝗼𝗻-𝘁𝗲𝗰𝗵𝗻𝗶𝗰𝗮𝗹
𝘀𝘁𝗮𝗸𝗲𝗵𝗼𝗹𝗱𝗲𝗿?"

🔍 What they’re really asking: Can you simplify data without oversimplifying?

Use storytelling—focus on actionable insights rather than jargon.

📌 "𝗧𝗲𝗹𝗹 𝗺𝗲 𝗮𝗯𝗼𝘂𝘁 𝗮 𝘁𝗶𝗺𝗲 𝘆𝗼𝘂 𝗺𝗮𝗱𝗲 𝗮 𝗺𝗶𝘀𝘁𝗮𝗸𝗲."

🔍 What they’re really asking: Can you learn from failure?

Own your mistake, explain how you fixed it, and share what you do differently now.

💡 𝗣𝗿𝗼 𝗧𝗶𝗽: The best candidates don’t just answer questions—they tell stories that demonstrate problem-solving, clarity, and impact.

🔄 Save this for later & share with someone preparing for interviews!
2