Data Analyst Interview Resources – Telegram
Data Analyst Interview Resources
52.7K subscribers
274 photos
1 video
53 files
347 links
Join our telegram channel to learn how data analysis can reveal fascinating patterns, trends, and stories hidden within the numbers! 📊

For ads & suggestions: @love_data
Download Telegram
1. What are the ways to detect outliers?

Outliers are detected using two methods:

Box Plot Method: According to this method, the value is considered an outlier if it exceeds or falls below 1.5*IQR (interquartile range), that is, if it lies above the top quartile (Q3) or below the bottom quartile (Q1).

Standard Deviation Method: According to this method, an outlier is defined as a value that is greater or lower than the mean ± (3*standard deviation).


2. What is a Recursive Stored Procedure?

A stored procedure that calls itself until a boundary condition is reached, is called a recursive stored procedure. This recursive function helps the programmers to deploy the same set of code several times as and when required.


3. What is the shortcut to add a filter to a table in EXCEL?

The filter mechanism is used when you want to display only specific data from the entire dataset. By doing so, there is no change being made to the data. The shortcut to add a filter to a table is Ctrl+Shift+L.

4. What is DAX in Power BI?

DAX stands for Data Analysis Expressions. It's a collection of functions, operators, and constants used in formulas to calculate and return values. In other words, it helps you create new info from data you already have.
👍296
1. How can we deal with problems that arise when the data flows in from a variety of sources?

There are many ways to go about dealing with multi-source problems. However, these are done primarily to solve the problems of:

Identifying the presence of similar/same records and merging them into a single recordRe-structuring the schema to ensure there is good schema integration


2. Where is Time Series Analysis used?

Since time series analysis (TSA) has a wide scope of usage, it can be used in multiple domains. Here are some of the places where TSA plays an important role:

Statistics
Signal processing
Econometrics
Weather forecasting
Earthquake prediction
Astronomy
Applied science


3. What are the ideal situations in which t-test or z-test can be used?

It is a standard practice that a t-test is used when there is a sample size less than 30 and the z-test is considered when the sample size exceeds 30 in most cases.


4. What is the usage of the NVL() function?

The NVL() function is used to convert the NULL value to the other value. The function returns the value of the second parameter if the first parameter is NULL. If the first parameter is anything other than NULL, it is left unchanged. This function is used in Oracle, not in SQL and MySQL. Instead of NVL() function, MySQL have IFNULL() and SQL Server have ISNULL() function.


5. What is the difference between DROP and TRUNCATE commands?

If a table is dropped, all things associated with that table are dropped as well. This includes the relationships defined on the table with other tables, access privileges, and grants that the table has, as well as the integrity checks and constraints.

However, if a table is truncated, there are no such problems as mentioned above. The table retains its original structure and the data is dropped.
👍255🎉2
Important questions for data analyst interview👇👇

1. Can you walk me through a project where you had to analyze a large dataset and draw meaningful insights from it?
2. How do you ensure the accuracy and reliability of your analysis results?
3. What programming languages and tools are you proficient in for data analysis?
4. How do you approach data cleaning and preprocessing before conducting analysis?
5. Can you give an example of a time when you had to communicate complex data analysis results to non-technical stakeholders?
6. How do you stay current with industry trends and best practices in data analysis?
7. Have you ever worked with machine learning algorithms or predictive modeling? If so, can you provide an example of a project where you applied these techniques?
8. How do you handle missing or incomplete data in your analysis process?
9. Can you discuss a challenging problem you encountered during a data analysis project and how you overcame it?
10. How do you prioritize and manage multiple projects or tasks simultaneously as a data analyst?
👍355
1. What is a Self-Join?

A self-join is a type of join that can be used to connect two tables. As a result, it is a unary relationship. Each row of the table is attached to itself and all other rows of the same table in a self-join. As a result, a self-join is mostly used to combine and compare rows from the same database table.


2. What is OLTP?

OLTP, or online transactional processing, allows huge groups of people to execute massive amounts of database transactions in real time, usually via the internet. A database transaction occurs when data in a database is changed, inserted, deleted, or queried.


3. What is the difference between joining and blending in Tableau?

Joining term is used when you are combining data from the same source, for example, worksheet in an Excel file or tables in Oracle databaseWhile blending requires two completely defined data sources in your report.

4. How to prevent someone from copying the cell from your worksheet in excel?

If you want to protect your worksheet from being copied, go into Menu bar > Review > Protect sheet > Password.

By entering password you can prevent your worksheet from getting copied.

5. What is the difference between the RANK() and DENSE_RANK() functions?

The RANK() function in the result set defines the rank of each row within your ordered partition. If both rows have the same rank, the next number in the ranking will be the previous rank plus a number of duplicates. If we have three records at rank 4, for example, the next level indicated is 7. The DENSE_RANK() function assigns a distinct rank to each row within a partition based on the provided column value, with no gaps. If we have three records at rank 4, for example, the next level indicated is 5.
👍345👏2
My journey as a data analyst so far: https://www.linkedin.com/posts/sql-analysts_today-i-decided-to-share-my-journey-in-data-activity-7169341885914853376-GWnd?utm_source=share&utm_medium=member_android

Feel free to write down your opinion in the comments.

I usually don't share my personal journey online but sometimes even small things like this help others.

I hope you guys can relate with me ❤️
13👍7🥰4
📚👀🚀Preparing for a Data science/ Data Analytics interview can be challenging, but with the right strategy, you can enhance your chances of success. Here are some key tips to assist you in getting ready:

Review Fundamental Concepts: Ensure you have a strong grasp of statistics, probability, linear algebra, data structures, algorithms, and programming languages like Python, R, and SQL.

Refresh Machine Learning Knowledge: Familiarize yourself with various machine learning algorithms, including supervised, unsupervised, and reinforcement learning.

Practice Coding: Sharpen your coding skills by solving data science-related problems on platforms like HackerRank, LeetCode, and Kaggle.

Build a Project Portfolio: Showcase your proficiency by creating a portfolio highlighting projects covering data cleaning, wrangling, exploratory data analysis, and machine learning.

Hone Communication Skills: Practice articulating complex technical ideas in simple terms, as effective communication is vital for data scientists when interacting with non-technical stakeholders.

Research the Company: Gain insights into the company's operations, industry, and how they leverage data to solve challenges.

🧠👍By adhering to these guidelines, you'll be well-prepared for your upcoming data science interview. Best of luck!

Hope this helps 👍❤️:⁠-⁠)

👍👀Be the first one to know the latest Job openings
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
👍195🤔1
📚🚀Becoming a successful data analyst requires a blend of technical, analytical, and soft skills. Key competencies for excelling in this role include:

Statistical Analysis: Mastery of statistical concepts such as probability, hypothesis testing, and regression analysis is essential.

Data Manipulation: Proficiency in SQL for data querying and manipulation, along with skills in data cleaning and transformation techniques.

Data Visualization: Ability to create insightful visualizations using tools like Tableau, Power BI, or Python libraries such as Matplotlib and Seaborn.

Programming: Strong programming skills in languages like Python or R, along with knowledge of relevant libraries like Pandas and NumPy.

Machine Learning (optional): Understanding of machine learning principles for predictive modeling and classification tasks.

Database Management: Familiarity with database systems such as MySQL, PostgreSQL, or MongoDB for handling large datasets.
Critical Thinking: Ability to analyze data critically, identify patterns, trends, and outliers.

Business Acumen: Understanding the business context and translating data insights into actionable recommendations.

Communication Skills: Effective communication of findings to non-technical stakeholders through both written and verbal means.

Continuous Learning: Commitment to ongoing learning and staying abreast of new tools, techniques, and industry trends to remain competitive.

By honing these skills and gaining practical experience through projects or internships, individuals can build a robust portfolio for a thriving career in data analysis.

React 👍❤️ to this it is very helpful...
25👍15🥰1
Top 20 Excel Interview Questions for Data Analysts 👇
https://www.linkedin.com/posts/sql-analysts_excel-dataanalytics-activity-7175072975526739968-dx5r

Like the post if you need more similar content
👍8
1. What are Query and Query language?

A query is nothing but a request sent to a database to retrieve data or information. The required data can be retrieved from a table or many tables in the database.

Query languages use various types of queries to retrieve data from databases. SQL, Datalog, and AQL are a few examples of query languages; however, SQL is known to be the widely used query language.



2. What are Superkey and candidate key?

A super key may be a single or a combination of keys that help to identify a record in a table. Know that Super keys can have one or more attributes, even though all the attributes are not necessary to identify the records.

A candidate key is the subset of Superkey, which can have one or more than one attributes to identify records in a table. Unlike Superkey, all the attributes of the candidate key must be helpful to identify the records.


3. What do you mean by buffer pool and mention its benefits?

A buffer pool in SQL is also known as a buffer cache. All the resources can store their cached data pages in a buffer pool. The size of the buffer pool can be defined during the configuration of an instance of SQL Server.
The following are the benefits of a buffer pool:

Increase in I/O performance
Reduction in I/O latency
Increase in transaction throughput
Increase in reading performance


4. What is the difference between Zero and NULL values in SQL?

When a field in a column doesn’t have any value, it is said to be having a NULL value. Simply put, NULL is the blank field in a table. It can cancel be considered as an unassigned, unknown, or unavailable value. On the contrary, zero is a number, and it is an available, assigned, and known value.
👍275
How to answer tell me about yourself questions in data analyst interview 👇👇
https://news.1rj.ru/str/learndataanalysis/844
👍5👏3
1. List the different types of relationships in SQL.

One-to-One - This can be defined as the relationship between two tables where each record in one table is associated with the maximum of one record in the other table.
One-to-Many & Many-to-One - This is the most commonly used relationship where a record in a table is associated with multiple records in the other table.
Many-to-Many - This is used in cases when multiple instances on both sides are needed for defining a relationship.
Self-Referencing Relationships - This is used when a table needs to define a relationship with itself.

2. What are the different views available in Power BI Desktop?

There are three different views in Power BI, each of which serves another purpose:
Report View - In this view, users can add visualizations and additional report pages and publish the same on the portal.
Data View - In this view, data shaping can be performed using Query Editor tools.
Model View - In this view, users can manage relationships between complex datasets.


3. What are macros in Excel?

Excel allows you to automate the tasks you do regularly by recording them into macros. So, a macro is an action or a set of them that you can perform n number of times. For example, if you have to record the sales of each item at the end of the day, you can create a macro that will automatically calculate the sales, profits, loss, etc and use the same for the future instead of manually calculating it every day.
👍124
1. What is the Difference Between a Shallow Copy and Deep Copy in python?

Deep copy creates a different object and populates it with the child objects of the original object. Therefore, changes in the original object are not reflected in the copy. copy.deepcopy() creates a Deep Copy. Shallow copy creates a different object and populates it with the references of the child objects within the original object. Therefore, changes in the original object are reflected in the copy. copy.copy creates a Shallow Copy.

2. How can you remove duplicate values in a range of cells?

1. To delete duplicate values in a column, select the highlighted cells, and press the delete button. After deleting the values, go to the ‘Conditional Formatting’ option present in the Home tab. Choose ‘Clear Rules’ to remove the rules from the sheet.

2. You can also delete duplicate values by selecting the ‘Remove Duplicates’ option under Data Tools present in the Data tab.


3. Define shelves and sets in Tableau?

Shelves: Every worksheet in Tableau will have shelves such as columns, rows, marks, filters, pages, and more. By placing filters on shelves we can build our own visualization structure. We can control the marks by including or excluding data.
Sets: The sets are used to compute a condition on which the dataset will be prepared. Data will be grouped together based on a condition. Fields which is responsible for grouping are known assets. For example – students having grades of more than 70%.

4. Define Entity, Entity type, and Entity set.

Entity can be anything, be it a place, class or object which has an independent existence in the real world.

Entity Type represents a set of entities that have similar attributes.

Entity Set in the database represents a collection of entities having a particular entity type.
👍205👏1🤔1
1. What is the Difference Between a Shallow Copy and Deep Copy in python?

Deepcopy creates a different object and populates it with the child objects of the original object. Therefore, changes in the original object are not reflected in the copy. copy.deepcopy() creates a Deep Copy. Shallow copy creates a different object and populates it with the references of the child objects within the original object. Therefore, changes in the original object are reflected in the copy. copy.copy creates a Shallow Copy.


2. How can you remove duplicate values in a range of cells?

1. To delete duplicate values in a column, select the highlighted cells, and press the delete button. After deleting the values, go to the ‘Conditional Formatting’ option present in the Home tab. Choose ‘Clear Rules’ to remove the rules from the sheet.

2. You can also delete duplicate values by selecting the ‘Remove Duplicates’ option under Data Tools present in the Data tab.


3. Define shelves and sets in Tableau?

Shelves: Every worksheet in Tableau will have shelves such as columns, rows, marks, filters, pages, and more. By placing filters on shelves we can build our own visualization structure. We can control the marks by including or excluding data.
Sets: The sets are used to compute a condition on which the dataset will be prepared. Data will be grouped together based on a condition. Fields which is responsible for grouping are known assets. For example – students having grades of more than 70%.
👍211