Шпаргалка по SQL-функциям
- Агрегатные функции (COUNT, SUM, AVG, MIN, MAX),
- оконные функции (ROW_NUMBER, RANK, LAG, LEAD),
- строковые функции (LOWER, SUBSTRING, CONCAT),
- работа с датами (NOW, DATE_PART, TRUNC),
- управление потоком (CASE, COALESCE),
- фильтры (IN, LIKE),
- математика (ROUND, MOD).
- Агрегатные функции (COUNT, SUM, AVG, MIN, MAX),
- оконные функции (ROW_NUMBER, RANK, LAG, LEAD),
- строковые функции (LOWER, SUBSTRING, CONCAT),
- работа с датами (NOW, DATE_PART, TRUNC),
- управление потоком (CASE, COALESCE),
- фильтры (IN, LIKE),
- математика (ROUND, MOD).
👍20❤5🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
«Я — Гатс, иду по дороге меча».
Теперь такие видео можно делать в два клика — хоть про «Берсерк», хоть про ваш выпускной, хоть про корпоратив.
Просто вставляете тему, и нейросеть ставит сцену, пишет сценарий и снимает всё за вас.
Вот промпт:
Локация:
Пост-советская школа
— Качество видео как будто снято на слегка пиксельную камеру 90-х, школьный спектакль в день выступления
— Группа детей в костюмах на тематику разговаривает друг с другом
— Дети показывают сценку и читают слова на тему, будто в школе рассказывая тематику
— Аудитория поддерживающих родителей тихо ахает, и одна из мам в зале шепчет себе под нос что-то на тему выступления
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤1🔥1
SQL-инъекции остаются одной из самых частых и опасных уязвимостей в веб-приложениях. Ошибка в одном запросе — и злоумышленник получает доступ к базе данных, паролям и пользовательским данным.
В этом материале — полный практический разбор:
как именно происходят SQL-инъекции, какие ошибки разработчиков к ним приводят, как их распознать в коде и главное — как защититься.
Разберём реальные примеры на Python, PHP и Go, посмотрим, как атакующий «взламывает» запрос, и научимся писать безопасный код с параметризованными запросами и ORM.
Это не теория, а руководство, которое поможет понять уязвимость изнутри и навсегда закрыть её в своих проектах.
👉 Читать гайд
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍3🥰1
PostgreSQL – одна из самых мощных СУБД с открытым исходным кодом. Этот гайд подробно охватывает ключевые аспекты PostgreSQL: от внутренней архитектуры до приёмов оптимизации. Мы рассмотрим администрирование, производительность, расширения, инструменты, а также сравним популярные ORM для Python и Go. В конце приведён список продвинутых вопросов, часто встречающихся на собеседованиях.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5
🪄 Открытая альтернатива Firebase — на стероидах PostgreSQL
Платформа, которая даёт всё, чтобы собрать современное веб-, мобильное или AI-приложение — без проприетарных SDK и боли.
Что внутри:
⚙️ Хостинг Postgres с realtime-синхронизацией
🧩 Автогенерация REST и GraphQL API
🔐 Аутентификация и авторизация через JWT
⚡ Edge-функции и серверные триггеры
📦 Хранилище файлов с поддержкой S3
🧠 AI-инструменты: векторные индексы, эмбеддинги, семантический поиск
🪶 Всё open source и доступно для self-host.
По сути это Firebase-опыт, но построенный на «взрослых» open-source технологиях:
PostgreSQL, Elixir, GoTrue, PostgREST, pg_graphql.
Платформа, где можно запустить идею, вырастить продукт и не упереться в чьи-то закрытые лимиты.
#Postgres #OpenSource #Backend #AI #GraphQL #Realtime #FirebaseAlternative
https://github.com/supabase/supabase
Платформа, которая даёт всё, чтобы собрать современное веб-, мобильное или AI-приложение — без проприетарных SDK и боли.
Что внутри:
⚙️ Хостинг Postgres с realtime-синхронизацией
🧩 Автогенерация REST и GraphQL API
🔐 Аутентификация и авторизация через JWT
⚡ Edge-функции и серверные триггеры
📦 Хранилище файлов с поддержкой S3
🧠 AI-инструменты: векторные индексы, эмбеддинги, семантический поиск
🪶 Всё open source и доступно для self-host.
По сути это Firebase-опыт, но построенный на «взрослых» open-source технологиях:
PostgreSQL, Elixir, GoTrue, PostgREST, pg_graphql.
Платформа, где можно запустить идею, вырастить продукт и не упереться в чьи-то закрытые лимиты.
#Postgres #OpenSource #Backend #AI #GraphQL #Realtime #FirebaseAlternative
https://github.com/supabase/supabase
❤2👍1
Какой SQL-оператор отвечает за удаление всей таблицы?
Anonymous Quiz
14%
DELETE
0%
EVAPORATE
1%
ALTER
65%
DROP
12%
TRUNCATE
1%
UPDATE
4%
REMOVE
2%
ERASE
👍12😁7💯1
Forwarded from Machinelearning
• Содержание: Курс включает 9 лекций, дополненных видео, подробными презентациями и примерами кода. Цикла - обучение разработке ИИ-агентов доступен написан понятно, даже для новичков в программирование.
• Темы: В лекциях рассматриваются такие темы, такие как RAG (Retrieval-Augmented Generation), эмбеддинги, агенты и протокол MCP.
Культовый трек CS 249 превратили в интерактивный учебник - и это, пожалуй, один из лучших стартов для инженеров, которые хотят делать реальные ML-системы, а не просто играться с моделями.
• Вся база по ML: объясняют фундамент с нуля, нужно только знание Python
• Проектирование систем и инженерия данных
• Подготовка датасетов, MLOps и мониторинг
• Развёртывание ИИ в IoT и продакшене
Это практический курс: не о формулах, а о том, как внедрять ML так, чтобы он приносил бизнесу прибыль.
Если хочешь понять, как модели живут в проде - идеальный вариант для старта.
NVIDIA показала, как собрать AI-агента, который понимает твои запросы на естественном языке и сам выполняет команды Bash.
В основе модель Nemotron Nano 9B v2: компактная, быстрая, идеально подходит для локального эксперимента.
Агент умеет:
- распознавать команды на естественном языке («создай папку», «покажи файлы»),
- превращать эти команды в рабочие Bash-срипты
- спрашивать подтверждение перед выполнением.
Весь код занимает ~200 строк Python, работает через FastAPI и LangGraph.
Можно расширить под DevOps, Git-операции, анализ логов или управление сервером.
Полностью бесплатно и максимально практично.
Что внутри:
• Python, Pandas, визуализация
• Основы машинного обучения и фичеринжиниринг
• Подготовка данных и работа с моделями
Практика без лишней теории учишься и сразу применяешь.
Вы узнаете, как масштабировать базы данных через шардинг - разбиение данных по серверам для роста производительности и отказоустойчивости.
Главное:
• Шардинг нужен, когда одна база больше не справляется с нагрузкой.
• Есть два популярных подхода — по диапазону (range) и по хешу (hash).
• Важно выбрать стабильный ключ (например, user_id) и избегать кросс-шардовых запросов.
• Прокси-слой немного увеличивает задержку, но даёт масштабируемость.
Отличный материал, если хочешь понять, как строят системы уровня YouTube. А здесь много базы по SQL
Читать
Список из 60 проектов на GitHub с открытым кодом по генеративному ИИ 0от текстовых моделей до аудио и видео.
Каждый проект - с описанием и ссылкой на репозиторий. Можно выбрать идею, запустить локально и собрать своё AI-портфолио.
👉 Еще больше полезного.
@ai_machinelearning_big_data
#AI #MachineLearning #DataScience #ML #ИИ #freecourses
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3🔥2
Следит за запросами, блокировками, использованием памяти и CPU - помогает мгновенно понять, что происходит с базой в реальном времени.
💻 Устанавливается одной командой:
sudo apt install pg-activityРаботает как локально, так и по сети.
Если запускать от postgres или root, открывается полная статистика - системные процессы, временные файлы и всё, что нужно для анализа нагрузки.
https://github.com/dalibo/pg_activity
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6👍3❤1🥰1
Где верно прописано удаление поля в таблице?
Anonymous Quiz
18%
DROP Users COLUMN name;
8%
SELECT Users DROP COLUMN name;
9%
TRUNCATE Users DROP COLUMN name;
55%
ALTER TABLE Users DROP COLUMN name;
10%
Узнать ответ
Продвинутый SQL-совет: используйте partial indexes как «селективный ускоритель», но не только для WHERE — ещё и для JOIN-ов.
Большинство разработчиков делают частичные индексы так:
CREATE INDEX idx_active_users ON users(id) WHERE active = true;
Но фишка в том, что partial index может радикально ускорить запросы, где фильтр стоит не в WHERE, а «прячется» в JOIN-условии. Оптимизатор всё равно понимает условие и использует индекс.
Например, у вас есть таблица logs, где 95% строк — архив, и только 5% актуальные. Запрос делает join:
Если делать обычный индекс, он будет огромный. Но partial index:
Теперь:
- индекс в 20–30 раз меньше
- cache hit rate выше
- планы меняются с seq scan на index scan
- JOIN начинает работать почти как в in-memory базе
Прикольно, что работает даже если в SELECT самого условия нет — главное, чтобы оно было в ON.
Это отличный способ ускорять «холодные» большие таблицы, где часто обращаются только к маленькому активному сегменту.
Большинство разработчиков делают частичные индексы так:
CREATE INDEX idx_active_users ON users(id) WHERE active = true;
Но фишка в том, что partial index может радикально ускорить запросы, где фильтр стоит не в WHERE, а «прячется» в JOIN-условии. Оптимизатор всё равно понимает условие и использует индекс.
Например, у вас есть таблица logs, где 95% строк — архив, и только 5% актуальные. Запрос делает join:
SELECT u.id, l.event
FROM users u
JOIN logs l ON l.user_id = u.id AND l.is_archived = false;
Если делать обычный индекс, он будет огромный. Но partial index:
CREATE INDEX idx_logs_active ON logs(user_id)
WHERE is_archived = false;
Теперь:
- индекс в 20–30 раз меньше
- cache hit rate выше
- планы меняются с seq scan на index scan
- JOIN начинает работать почти как в in-memory базе
Прикольно, что работает даже если в SELECT самого условия нет — главное, чтобы оно было в ON.
Это отличный способ ускорять «холодные» большие таблицы, где часто обращаются только к маленькому активному сегменту.
👍21🔥5❤3
— уже работает с PostgreSQL, а MySQL и MongoDB на очереди
— понимает обычный язык: достаточно спросить «какие пользователи были активны за месяц?»
— шифрует всё — строки подключения, пароли, запросы
— позволяет выбрать модель, на которой крутится ассистент
Опенсорс, безопасно и реально экономит время.
https://github.com/wannabespace/conar
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔7❤3👍1
Как MySQL обрабатывает повторяющиеся ключи при использовании INSERT IGNORE?
Anonymous Quiz
20%
Вставляет все строки, включая дубликаты
64%
Игнорирует строки с конфликтующими ключами без ошибки
7%
Выдаёт ошибку и откатывает всю операцию
9%
Обновляет существующие строки с конфликтом
📚 Курс, который прокачает твои AI-скиллы в BigQuery
Этот курс учит работать с Gemini прямо внутри BigQuery и закрывает полный набор практических навыков:
- генерация и отладка SQL-запросов с помощью Gemini
- анализ тональности текста
- автоматические суммари и выделение ключевых слов
- генерация эмбеддингов
- построение RAG-пайплайна
- мультимодальный векторный поиск
Если хочешь уверенно использовать AI-инструменты в аналитике и продуктах — этот курс даёт полный набор необходимых умений.
https://www.skills.google/paths/1803/course_templates/1232
Этот курс учит работать с Gemini прямо внутри BigQuery и закрывает полный набор практических навыков:
- генерация и отладка SQL-запросов с помощью Gemini
- анализ тональности текста
- автоматические суммари и выделение ключевых слов
- генерация эмбеддингов
- построение RAG-пайплайна
- мультимодальный векторный поиск
Если хочешь уверенно использовать AI-инструменты в аналитике и продуктах — этот курс даёт полный набор необходимых умений.
https://www.skills.google/paths/1803/course_templates/1232
👍3❤1💊1
⚡️ Бесплатный 7-часовой курс MIT по генеративному ИИ
MIT выложил полный интенсив по современным генмоделям — от LLM до диффузионных моделей. Разбирают архитектуры, принципы обучения, практические применения и ключевые идеи, которые лежат в основе сегодняшних систем.
Подойдёт тем, кто хочет быстро собрать цельную картину без воды.
Курс: https://www.youtube.com/playlist?list=PLXV9Vh2jYcjbnv67sXNDJiO8MWLA3ZJKR
MIT выложил полный интенсив по современным генмоделям — от LLM до диффузионных моделей. Разбирают архитектуры, принципы обучения, практические применения и ключевые идеи, которые лежат в основе сегодняшних систем.
Подойдёт тем, кто хочет быстро собрать цельную картину без воды.
Курс: https://www.youtube.com/playlist?list=PLXV9Vh2jYcjbnv67sXNDJiO8MWLA3ZJKR
❤3👍3
Какие поля из таблицы обязательно перечислять в INSERT для вставки данных?
Anonymous Quiz
14%
Конечно, все!
14%
Только те, у которых нет DEFAULT-значения
57%
Те, у которых нет DEFAULT-значения и которые не имеют атрибута auto_increment
15%
Все поля имеют негласное DEFAULT-значение, обязательных полей в SQL нет
Этот практический гайд по статистике на Python - ваш надёжный проводник в мир анализа, визуализации и интерпретации данных.
От простых описательных показателей до регрессий и временных рядов — с примерами, кодом и реальными задачами. Всё, что нужно, чтобы уверенно применять статистику на практике.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍4🔥1
🌊 ETL на стероидах: стриминг данных Postgres в реальном времени на Rust 🦀
Supabase выкатили интересный open-source фреймворк - supabase/etl, который позволяет стримить данные из Postgres куда угодно в реальном времени.
Это набор простых, модульных Rust-блоков, из которых можно собрать собственный конвейер Change Data Capture (CDC). Вы получаете полный контроль над тем, как обрабатывать изменения в базе и куда их отправлять — без тяжёлых платформ и сложных конфигов.
Что делает этот фреймворк полезным:
- Прямой стриминг изменений из Postgres (CDC)
- Rust — значит скорость, надёжность и низкие накладные расходы
- Гибкие компоненты: можно строить свои конвейеры под любые нужды
- Подходит для интеграций, аналитики, событийных систем, real-time обновлений
- Легче и прозрачнее, чем классические ETL/ELT-платформы
По сути, это конструктор, из которого можно быстро собрать real-time data pipeline:
достал изменения из Postgres → преобразовал → отправил в Kafka, ClickHouse, S3, API — куда угодно.
Если вы работаете с потоковыми данными, аналитикой или микросервисами - стоит попробовать. Rust + CDC - это мощное сочетание для стабильных и быстрых пайплайнов.
https://github.com/supabase/etl
Supabase выкатили интересный open-source фреймворк - supabase/etl, который позволяет стримить данные из Postgres куда угодно в реальном времени.
Это набор простых, модульных Rust-блоков, из которых можно собрать собственный конвейер Change Data Capture (CDC). Вы получаете полный контроль над тем, как обрабатывать изменения в базе и куда их отправлять — без тяжёлых платформ и сложных конфигов.
Что делает этот фреймворк полезным:
- Прямой стриминг изменений из Postgres (CDC)
- Rust — значит скорость, надёжность и низкие накладные расходы
- Гибкие компоненты: можно строить свои конвейеры под любые нужды
- Подходит для интеграций, аналитики, событийных систем, real-time обновлений
- Легче и прозрачнее, чем классические ETL/ELT-платформы
По сути, это конструктор, из которого можно быстро собрать real-time data pipeline:
достал изменения из Postgres → преобразовал → отправил в Kafka, ClickHouse, S3, API — куда угодно.
Если вы работаете с потоковыми данными, аналитикой или микросервисами - стоит попробовать. Rust + CDC - это мощное сочетание для стабильных и быстрых пайплайнов.
https://github.com/supabase/etl
❤4👍3🔥2
🔥 Подборка полезных ресурсов для программистов.
Здесь ты найдёшь всё это - коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Devops: t.me/DevOPSitsec
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Data Science: t.me/data_analysis_ml
Javanoscript: t.me/javanoscriptv
C#: t.me/csharp_1001_notes
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://news.1rj.ru/str/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://news.1rj.ru/str/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://news.1rj.ru/str/addlist/mzMMG3RPZhY2M2Iy
Папка Linux:https://news.1rj.ru/str/addlist/w4Doot-XBG4xNzYy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://news.1rj.ru/str/addlist/BkskQciUW_FhNjEy
Сохрани себе, чтобы не потерять!
Здесь ты найдёшь всё это - коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Devops: t.me/DevOPSitsec
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Data Science: t.me/data_analysis_ml
Javanoscript: t.me/javanoscriptv
C#: t.me/csharp_1001_notes
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://news.1rj.ru/str/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://news.1rj.ru/str/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://news.1rj.ru/str/addlist/mzMMG3RPZhY2M2Iy
Папка Linux:https://news.1rj.ru/str/addlist/w4Doot-XBG4xNzYy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://news.1rj.ru/str/addlist/BkskQciUW_FhNjEy
Сохрани себе, чтобы не потерять!
👍2