Machine Learning & Artificial Intelligence | Data Science Free Courses – Telegram
Machine Learning & Artificial Intelligence | Data Science Free Courses
64K subscribers
556 photos
2 videos
98 files
424 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
AI Engineer Essentials

Deep Learning: Neural networks, CNNs, RNNs, transformers.
Programming: Python, TensorFlow, PyTorch, Keras.
NLP: NLTK, SpaCy, Hugging Face.
Computer Vision: OpenCV techniques.
Reinforcement Learning: RL algorithms and applications.
LLMs and Transformers: Advanced language models.
LangChain and RAG: Retrieval-augmented generation techniques.
Vector Databases: Managing embeddings and vectors.
AI Ethics: Ethical considerations and bias in AI.
R&D: Implementing AI research papers.
👍4
An Artificial Neuron Network (ANN), popularly known as Neural Network is a computational model based on the structure and functions of biological neural networks. It is like an artificial human nervous system for receiving, processing, and transmitting information in terms of Computer Science.

Basically, there are 3 different layers in a neural network :

Input Layer (All the inputs are fed in the model through this layer)

Hidden Layers (There can be more than one hidden layers which are used for processing the inputs received from the input layers)

Output Layer (The data after processing is made available at the output layer)

Graph data can be used with a lot of learning tasks contain a lot rich relation data among elements. For example, modeling physics system, predicting protein interface, and classifying diseases require that a model learns from graph inputs. Graph reasoning models can also be used for learning from non-structural data like texts and images and reasoning on extracted structures.
👍52
Data Scientist Roadmap 2025 👆
👍4
Top 5 Regression Algorithms in ML
👍7
Learning Python for data science can be a rewarding experience. Here are some steps you can follow to get started:

1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.

2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.

3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.

4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.

5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.

6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.

7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.

Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!

Please react 👍❤️ if you guys want me to share more of this content...
👍13👌1
🌟 Data Analyst vs Business Analyst: Quick comparison 🌟

1. Data Analyst: Dives into data, cleans it up, and finds hidden insights like Sherlock Holmes. 🕵️‍♂️

Business Analyst: Talks to stakeholders, defines requirements, and ensures everyone’s on the same page. The diplomat. 🤝


2. Data Analyst: Master of Excel, SQL, Python, and dashboards. Their life is rows, columns, and code. 📊

Business Analyst: Fluent in meetings, presentations, and documentation. Their life is all about people and processes. 🗂️


3. Data Analyst: Focuses on numbers, patterns, and trends to tell a story with data. 📈

Business Analyst: Focuses on the "why" behind the numbers to help the business make decisions. 💡


4. Data Analyst: Creates beautiful Power BI or Tableau dashboards that wow stakeholders. 🎨

Business Analyst: Uses those dashboards to present actionable insights to the C-suite. 🎤


5. Data Analyst: SQL queries, Python noscripts, and statistical models are their weapons. 🛠️

Business Analyst: Process diagrams, requirement docs, and communication are their superpowers. 🦸‍♂️


6. Data Analyst: “Why is revenue declining? Let me analyze the sales data.”

Business Analyst: “Why is revenue declining? Let’s talk to the sales team and fix the process.”


7. Data Analyst: Works behind the scenes, crunching data and making sense of numbers. 🔢

Business Analyst: Works with teams to ensure that processes, strategies, and technologies align with business goals. 🎯


8. Data Analyst: Uses data to make decisions—raw data is their best friend. 📉

Business Analyst: Uses data to support business decisions and recommends solutions to improve processes. 📝


9. Data Analyst: Aims for accuracy, precision, and statistical significance in every analysis. 🧮

Business Analyst: Aims to understand business needs, optimize workflows, and align solutions with business objectives. 🏢


10. Data Analyst: Focuses on extracting insights from data for current or historical analysis. 🔍

Business Analyst: Looks forward, aligning business strategies with long-term goals and improvements. 🌱

Both roles are vital, but they approach the data world in their unique ways.

Choose your path wisely! 🚀

Like this post for more content like this 👍♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍53🤣1
Three different learning styles in machine learning algorithms:

1. Supervised Learning

Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.

A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.

Example problems are classification and regression.

Example algorithms include: Logistic Regression and the Back Propagation Neural Network.

2. Unsupervised Learning

Input data is not labeled and does not have a known result.

A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.

Example problems are clustering, dimensionality reduction and association rule learning.

Example algorithms include: the Apriori algorithm and K-Means.

3. Semi-Supervised Learning

Input data is a mixture of labeled and unlabelled examples.

There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.

Example problems are classification and regression.

Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
👍74🥰1🤣1
🚦Top 10 Data Science Tools🚦

Here we will examine the top best Data Science tools that are utilized generally by data researchers and analysts. But prior to beginning let us discuss about what is Data Science.

🛰What is Data Science ?

Data science is a quickly developing field that includes the utilization of logical strategies, calculations, and frameworks to extract experiences and information from organized and unstructured data .

🗽Top Data Science Tools that are normally utilized :

1.) Jupyter Notebook : Jupyter Notebook is an open-source web application that permits clients to make and share archives that contain live code, conditions, representations, and narrative text .

2.) Keras : Keras is a famous open-source brain network library utilized in data science. It is known for its usability and adaptability.
Keras provides a range of tools and techniques for dealing with common data science problems, such as overfitting, underfitting, and regularization.

3.) PyTorch : PyTorch is one more famous open-source AI library utilized in information science. PyTorch also offers easy-to-use interfaces for various tasks such as data loading, model building, training, and deployment, making it accessible to beginners as well as experts in the field of machine learning.

4.) TensorFlow : TensorFlow allows data researchers to play out an extensive variety of AI errands, for example, image recognition , natural language processing , and deep learning.

5.) Spark : Spark allows data researchers to perform data processing tasks like data control, investigation, and machine learning , rapidly and effectively.

6.) Hadoop : Hadoop provides a distributed file system (HDFS) and a distributed processing framework (MapReduce) that permits data researchers to handle enormous datasets rapidly.

7.) Tableau : Tableau is a strong data representation tool that permits data researchers to make intuitive dashboards and perceptions. Tableau allows users to combine multiple charts.

8.) SQL : SQL (Structured Query Language) SQL permits data researchers to perform complex queries , join tables, and aggregate data, making it simple to extricate bits of knowledge from enormous datasets. It is a powerful tool for data management, especially for large datasets.

9.) Power BI : Power BI is a business examination tool that conveys experiences and permits clients to make intuitive representations and reports without any problem.

10.) Excel : Excel is a spreadsheet program that broadly utilized in data science. It is an amazing asset for information the board, examination, and visualization .Excel can be used to explore the data by creating pivot tables, histograms, scatterplots, and other types of visualizations.
👍52🤣1
The Only roadmap you need to become an ML Engineer 🥳

Phase 1: Foundations (1-2 Months)
🔹 Math & Stats Basics – Linear Algebra, Probability, Statistics
🔹 Python Programming – NumPy, Pandas, Matplotlib, Scikit-Learn
🔹 Data Handling – Cleaning, Feature Engineering, Exploratory Data Analysis

Phase 2: Core Machine Learning (2-3 Months)
🔹 Supervised & Unsupervised Learning – Regression, Classification, Clustering
🔹 Model Evaluation – Cross-validation, Metrics (Accuracy, Precision, Recall, AUC-ROC)
🔹 Hyperparameter Tuning – Grid Search, Random Search, Bayesian Optimization
🔹 Basic ML Projects – Predict house prices, customer segmentation

Phase 3: Deep Learning & Advanced ML (2-3 Months)
🔹 Neural Networks – TensorFlow & PyTorch Basics
🔹 CNNs & Image Processing – Object Detection, Image Classification
🔹 NLP & Transformers – Sentiment Analysis, BERT, LLMs (GPT, Gemini)
🔹 Reinforcement Learning Basics – Q-learning, Policy Gradient

Phase 4: ML System Design & MLOps (2-3 Months)
🔹 ML in Production – Model Deployment (Flask, FastAPI, Docker)
🔹 MLOps – CI/CD, Model Monitoring, Model Versioning (MLflow, Kubeflow)
🔹 Cloud & Big Data – AWS/GCP/Azure, Spark, Kafka
🔹 End-to-End ML Projects – Fraud detection, Recommendation systems

Phase 5: Specialization & Job Readiness (Ongoing)
🔹 Specialize – Computer Vision, NLP, Generative AI, Edge AI
🔹 Interview Prep – Leetcode for ML, System Design, ML Case Studies
🔹 Portfolio Building – GitHub, Kaggle Competitions, Writing Blogs
🔹 Networking – Contribute to open-source, Attend ML meetups, LinkedIn presence

Follow this advanced roadmap to build a successful career in ML!

The data field is vast, offering endless opportunities so start preparing now.
👍82🤣1
💎 Data science Free Courses

1️⃣ Python for Everybody Course : A great course for beginners to learn Python.

2️⃣ Data analysis with Python course : This course introduces you to data analysis techniques with Python.

3️⃣ Databases & SQL course : You will learn how to manage databases with SQL.

4️⃣ Intro to Inferential Statistics course : This course teaches you how to make predictions by learning statistics.

5️⃣ ML Zoomcamp course : a practical and practical course for learning machine learning.
👍51🤣1