Math Topics every Data Scientist should know
❤5🥰1
List of Top 12 Coding Channels on WhatsApp:
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javanoscript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING 👍👍
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javanoscript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING 👍👍
❤6🥰1
Preparing for a machine learning interview as a data analyst is a great step.
Here are some common machine learning interview questions :-
1. Explain the steps involved in a machine learning project lifecycle.
2. What is the difference between supervised and unsupervised learning? Give examples of each.
3. What evaluation metrics would you use to assess the performance of a regression model?
4. What is overfitting and how can you prevent it?
5. Describe the bias-variance tradeoff.
6. What is cross-validation, and why is it important in machine learning?
7. What are some feature selection techniques you are familiar with?
8.What are the assumptions of linear regression?
9. How does regularization help in linear models?
10. Explain the difference between classification and regression.
11. What are some common algorithms used for dimensionality reduction?
12. Describe how a decision tree works.
13. What are ensemble methods, and why are they useful?
14. How do you handle missing or corrupted data in a dataset?
15. What are the different kernels used in Support Vector Machines (SVM)?
These questions cover a range of fundamental concepts and techniques in machine learning that are important for a data scientist role.
Good luck with your interview preparation!
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Like if you need similar content 😄👍
Here are some common machine learning interview questions :-
1. Explain the steps involved in a machine learning project lifecycle.
2. What is the difference between supervised and unsupervised learning? Give examples of each.
3. What evaluation metrics would you use to assess the performance of a regression model?
4. What is overfitting and how can you prevent it?
5. Describe the bias-variance tradeoff.
6. What is cross-validation, and why is it important in machine learning?
7. What are some feature selection techniques you are familiar with?
8.What are the assumptions of linear regression?
9. How does regularization help in linear models?
10. Explain the difference between classification and regression.
11. What are some common algorithms used for dimensionality reduction?
12. Describe how a decision tree works.
13. What are ensemble methods, and why are they useful?
14. How do you handle missing or corrupted data in a dataset?
15. What are the different kernels used in Support Vector Machines (SVM)?
These questions cover a range of fundamental concepts and techniques in machine learning that are important for a data scientist role.
Good luck with your interview preparation!
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Like if you need similar content 😄👍
❤2
Today, lets understand Machine Learning in simplest way possible
What is Machine Learning?
Think of it like this:
Machine Learning is when you teach a computer to learn from data, so it can make decisions or predictions without being told exactly what to do step-by-step.
Real-Life Example:
Let’s say you want to teach a kid how to recognize a dog.
You show the kid a bunch of pictures of dogs.
The kid starts noticing patterns — “Oh, they have four legs, fur, floppy ears...”
Next time the kid sees a new picture, they might say, “That’s a dog!” — even if they’ve never seen that exact dog before.
That’s what machine learning does — but instead of a kid, it's a computer.
In Tech Terms (Still Simple):
You give the computer data (like pictures, numbers, or text).
You give it examples of the right answers (like “this is a dog”, “this is not a dog”).
It learns the patterns.
Later, when you give it new data, it makes a smart guess.
Few Common Uses of ML You See Every Day:
Netflix: Suggesting shows you might like.
Google Maps: Predicting traffic.
Amazon: Recommending products.
Banks: Detecting fraud in transactions.
I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like for more ❤️
What is Machine Learning?
Think of it like this:
Machine Learning is when you teach a computer to learn from data, so it can make decisions or predictions without being told exactly what to do step-by-step.
Real-Life Example:
Let’s say you want to teach a kid how to recognize a dog.
You show the kid a bunch of pictures of dogs.
The kid starts noticing patterns — “Oh, they have four legs, fur, floppy ears...”
Next time the kid sees a new picture, they might say, “That’s a dog!” — even if they’ve never seen that exact dog before.
That’s what machine learning does — but instead of a kid, it's a computer.
In Tech Terms (Still Simple):
You give the computer data (like pictures, numbers, or text).
You give it examples of the right answers (like “this is a dog”, “this is not a dog”).
It learns the patterns.
Later, when you give it new data, it makes a smart guess.
Few Common Uses of ML You See Every Day:
Netflix: Suggesting shows you might like.
Google Maps: Predicting traffic.
Amazon: Recommending products.
Banks: Detecting fraud in transactions.
I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like for more ❤️
❤4
Starting your journey as a data analyst is an amazing start for your career. As you progress, you might find new areas that pique your interest:
• Data Science: If you enjoy diving deep into statistics, predictive modeling, and machine learning, this could be your next challenge.
• Data Engineering: If building and optimizing data pipelines excites you, this might be the path for you.
• Business Analysis: If you're passionate about translating data into strategic business insights, consider transitioning to a business analyst role.
But remember, even if you stick with data analysis, there's always room for growth, especially with the evolving landscape of AI.
No matter where your path leads, the key is to start now.
• Data Science: If you enjoy diving deep into statistics, predictive modeling, and machine learning, this could be your next challenge.
• Data Engineering: If building and optimizing data pipelines excites you, this might be the path for you.
• Business Analysis: If you're passionate about translating data into strategic business insights, consider transitioning to a business analyst role.
But remember, even if you stick with data analysis, there's always room for growth, especially with the evolving landscape of AI.
No matter where your path leads, the key is to start now.
❤4👍2
Many people ask this common question “Can I get a job with just SQL and Excel?” or “Can I get a job with just Power BI and Python?”.
The answer to all of those questions is yes.
There are jobs that use only SQL, Tableau, Power BI, Excel, Python, or R or some combination of those.
However, the combination of tools you learn impacts the total number of jobs you are qualified for.
For example, let’s say with just SQL and Excel you are qualified for 10 jobs, but if you add Tableau to that, you are qualified for 50 jobs.
If you have a success rate of landing a job you’re qualified for of 4%, having 5 times as many jobs to go for greatly improves your odds of landing a job.
Does this mean you should go out there and learn every single skill any data analyst job requires?
NO!
It’s about finding the core tools that many jobs want.
And, in my opinion, those tools are SQL, Excel, and a visualization tool.
With these three tools, you are qualified for the majority of entry level data jobs and many higher level jobs.
So, you can land a job with whatever tools you’re comfortable with.
But if you have the three tools above in your toolbelt, you will have many more jobs to apply for and greatly improve your chances of snagging one.
The answer to all of those questions is yes.
There are jobs that use only SQL, Tableau, Power BI, Excel, Python, or R or some combination of those.
However, the combination of tools you learn impacts the total number of jobs you are qualified for.
For example, let’s say with just SQL and Excel you are qualified for 10 jobs, but if you add Tableau to that, you are qualified for 50 jobs.
If you have a success rate of landing a job you’re qualified for of 4%, having 5 times as many jobs to go for greatly improves your odds of landing a job.
Does this mean you should go out there and learn every single skill any data analyst job requires?
NO!
It’s about finding the core tools that many jobs want.
And, in my opinion, those tools are SQL, Excel, and a visualization tool.
With these three tools, you are qualified for the majority of entry level data jobs and many higher level jobs.
So, you can land a job with whatever tools you’re comfortable with.
But if you have the three tools above in your toolbelt, you will have many more jobs to apply for and greatly improve your chances of snagging one.
❤4
Some essential concepts every data scientist should understand:
### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Denoscriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.
### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).
### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.
### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.
### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).
### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.
### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).
### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.
### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.
### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.
### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.
### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.
### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.
### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.
### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Denoscriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.
### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).
### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.
### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.
### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).
### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.
### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).
### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.
### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.
### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.
### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.
### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.
### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.
### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.
### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
❤5👍1
Topic: Python – Create IP Address Tracker GUI using Tkinter
---
### What You'll Build
A desktop app that allows the user to:
• Enter an IP address or domain
• Fetch geolocation data (country, city, ISP, etc.)
• Display it in a user-friendly Tkinter GUI
We'll use the
---
### Step-by-Step Code
---
### Requirements
Install the
---
### Exercise
• Enhance the app to export the result to a
• Add a map preview using a web view or link to Google Maps
• Add dark mode toggle for the GUI
---
#Python #Tkinter #IPTracker #Networking #GUI #DesktopApp
---
### What You'll Build
A desktop app that allows the user to:
• Enter an IP address or domain
• Fetch geolocation data (country, city, ISP, etc.)
• Display it in a user-friendly Tkinter GUI
We'll use the
requests library and a free API like ip-api.com.---
### Step-by-Step Code
import tkinter as tk
from tkinter import messagebox
import requests
# Function to fetch IP information
def track_ip():
ip = entry.get().strip()
if not ip:
messagebox.showwarning("Input Error", "Please enter an IP or domain.")
return
try:
url = f"http://ip-api.com/json/{ip}"
response = requests.get(url)
data = response.json()
if data["status"] == "fail":
messagebox.showerror("Error", data["message"])
return
# Show info
result_text.set(
f"IP: {data['query']}\n"
f"Country: {data['country']}\n"
f"Region: {data['regionName']}\n"
f"City: {data['city']}\n"
f"ZIP: {data['zip']}\n"
f"ISP: {data['isp']}\n"
f"Timezone: {data['timezone']}\n"
f"Latitude: {data['lat']}\n"
f"Longitude: {data['lon']}"
)
except Exception as e:
messagebox.showerror("Error", str(e))
# GUI Setup
app = tk.Tk()
app.noscript("IP Tracker")
app.geometry("400x400")
app.resizable(False, False)
# Widgets
tk.Label(app, text="Enter IP Address or Domain:", font=("Arial", 12)).pack(pady=10)
entry = tk.Entry(app, width=40, font=("Arial", 12))
entry.pack()
tk.Button(app, text="Track IP", command=track_ip, font=("Arial", 12)).pack(pady=10)
result_text = tk.StringVar()
result_label = tk.Label(app, textvariable=result_text, justify="left", font=("Courier", 10))
result_label.pack(pady=10)
app.mainloop()
---
### Requirements
Install the
requests library if not already installed:pip install requests
---
### Exercise
• Enhance the app to export the result to a
.txt or .csv file• Add a map preview using a web view or link to Google Maps
• Add dark mode toggle for the GUI
---
#Python #Tkinter #IPTracker #Networking #GUI #DesktopApp
❤7
Artificial Intelligence isn't easy!
It’s the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving field—stay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
💡 Embrace the journey of learning and building systems that can reason, understand, and adapt.
⏳ With dedication, hands-on practice, and continuous learning, you’ll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#ai #datascience
It’s the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving field—stay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
💡 Embrace the journey of learning and building systems that can reason, understand, and adapt.
⏳ With dedication, hands-on practice, and continuous learning, you’ll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#ai #datascience
❤3
Your biggest enemy 𝐅𝐄𝐀𝐑 𝐨𝐟 𝐑𝐞𝐣𝐞𝐜𝐭𝐢𝐨𝐧
People hesitate to apply for many opportunities just because of fear of rejection.
However, not applying means you are automatically rejecting yourself. They usually think I will start applying after 6-8 months with full preparation.
Do you really think it will work ??? Interview calls usually take months 😅
My suggestion would be to start applying after 10 days to 1 month of preparation . Try to give as many interviews as you can. In this way, you will learn 👇🏻
🌴 Frequently asked questions
🌴 Interview pattern
🌴 How to tweak your answers?
Give a try ,even in the worst scenario, you will get some interview experience. That experience will eventually help you in the future
All the best 👍👍
People hesitate to apply for many opportunities just because of fear of rejection.
However, not applying means you are automatically rejecting yourself. They usually think I will start applying after 6-8 months with full preparation.
Do you really think it will work ??? Interview calls usually take months 😅
My suggestion would be to start applying after 10 days to 1 month of preparation . Try to give as many interviews as you can. In this way, you will learn 👇🏻
🌴 Frequently asked questions
🌴 Interview pattern
🌴 How to tweak your answers?
Give a try ,even in the worst scenario, you will get some interview experience. That experience will eventually help you in the future
All the best 👍👍
❤4👍1
Andrew Ng just released two new AI Python courses for beginners!
The course teaches how to write code using AI.
If you're thinking about learning to code, now is the perfect time to do so.
https://deeplearning.ai/short-courses/ai-python-for-beginners/
The course teaches how to write code using AI.
If you're thinking about learning to code, now is the perfect time to do so.
https://deeplearning.ai/short-courses/ai-python-for-beginners/
❤5
Learning and Practicing SQL: Resources and Platforms
1. https://sqlbolt.com/
2. https://sqlzoo.net/
3. https://www.codecademy.com/learn/learn-sql
4. https://www.w3schools.com/sql/
5. https://www.hackerrank.com/domains/sql
6. https://www.windowfunctions.com/
7. https://selectstarsql.com/
8. https://quip.com/2gwZArKuWk7W
9. https://leetcode.com/problemset/database/
10. http://thedatamonk.com
1. https://sqlbolt.com/
2. https://sqlzoo.net/
3. https://www.codecademy.com/learn/learn-sql
4. https://www.w3schools.com/sql/
5. https://www.hackerrank.com/domains/sql
6. https://www.windowfunctions.com/
7. https://selectstarsql.com/
8. https://quip.com/2gwZArKuWk7W
9. https://leetcode.com/problemset/database/
10. http://thedatamonk.com
❤5