Machine Learning & Artificial Intelligence | Data Science Free Courses – Telegram
Machine Learning & Artificial Intelligence | Data Science Free Courses
63.6K subscribers
553 photos
2 videos
98 files
421 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
ML Engineer Roadmap 👆
4👍1🥰1
Cheatsheet Machine Learning Algorithms🌟
7👍3
Andrew Ng just released two new AI Python courses for beginners!

The course teaches how to write code using AI.

If you're thinking about learning to code, now is the perfect time to do so.

https://deeplearning.ai/short-courses/ai-python-for-beginners/
5
ChatGPT can help you land your dream job twice as fast. Here are 8 powerful ChatGPT prompts will 10X your interview chances.

Free book to master ChatGPT: https://news.1rj.ru/str/InterviewBooks/166

1. Customizing Your Resume ChatGPT prompt: "Can you make changes to my resume to fit the [Job Title] role at [Company]? Here's the job denoscription: [Paste Job Denoscription], and resume: [Paste Resume]."

2. Creating a Professional Summary ChatGPT prompt: "Using my resume, can you create a professional summary for me aligned to this [Job Title]." [Paste Resume]

3. Understanding Job Denoscriptions ChatGPT prompt: "What are the main responsibilities for this job? Please list the top three responsibilities required for [Job Title]." [Paste Job Denoscription]

4. Improving Your Resume Bullets ChatGPT prompt: "Please rewrite this bullet point from my resume using clear and impactful language while highlighting my accomplishments. [Paste Resume]"

5. Writing a LinkedIn Summary ChatGPT prompt: "Can you write a summary for my LinkedIn profile using my resume [Paste Resume]?"

6. Job Applications with ChatGPT ChatGPT prompt: "Can you identify my [Skills] experience from my resume [Paste Resume]? Please describe my specific [Skills] experience in conversational, clear language as if you were me."

7. Crafting Your Cover Letter ChatGPT prompt: "Can you write a personalized cover letter for the [Job Title] position at [Company]? Here's the job denoscription: [Paste Job Denoscription], and my current resume: [Paste Resume]."

8. Preparing for Interviews ChatGPT prompt: "What skills and experiences should I emphasize during an interview for the [Job Title] role in [Specific Industry]?"

ENJOY LEARNING 👍👍
6
Most Important Mathematical Equations in Data Science!

1️⃣ Gradient Descent: Optimization algorithm minimizing the cost function.
2️⃣ Normal Distribution: Distribution characterized by mean μ\muμ and variance σ2\sigma^2σ2.
3️⃣ Sigmoid Function: Activation function mapping real values to 0-1 range.
4️⃣ Linear Regression: Predictive model of linear input-output relationships.
5️⃣ Cosine Similarity: Metric for vector similarity based on angle cosine.
6️⃣ Naive Bayes: Classifier using Bayes’ Theorem and feature independence.
7️⃣ K-Means: Clustering minimizing distances to cluster centroids.
8️⃣ Log Loss: Performance measure for probability output models.
9️⃣ Mean Squared Error (MSE): Average of squared prediction errors.
🔟 MSE (Bias-Variance Decomposition): Explains MSE through bias and variance.
1️⃣1️⃣ MSE + L2 Regularization: Adds penalty to prevent overfitting.
1️⃣2️⃣ Entropy: Uncertainty measure used in decision trees.
1️⃣3️⃣ Softmax: Converts logits to probabilities for classification.
1️⃣4️⃣ Ordinary Least Squares (OLS): Estimates regression parameters by minimizing residuals.
1️⃣5️⃣ Correlation: Measures linear relationships between variables.
1️⃣6️⃣ Z-score: Standardizes value based on standard deviations from mean.
1️⃣7️⃣ Maximum Likelihood Estimation (MLE): Estimates parameters maximizing data likelihood.
1️⃣8️⃣ Eigenvectors and Eigenvalues: Characterize linear transformations in matrices.
1️⃣9️⃣ R-squared (R²): Proportion of variance explained by regression.
2️⃣0️⃣ F1 Score: Harmonic mean of precision and recall.
2️⃣1️⃣ Expected Value: Weighted average of all possible values.

Like if you need similar content 😄👍
6
SQL Basics for Beginners: Must-Know Concepts

1. What is SQL?
SQL (Structured Query Language) is a standard language used to communicate with databases. It allows you to query, update, and manage relational databases by writing simple or complex queries.

2. SQL Syntax
SQL is written using statements, which consist of keywords like SELECT, FROM, WHERE, etc., to perform operations on the data.
- SQL keywords are not case-sensitive, but it's common to write them in uppercase (e.g., SELECT, FROM).

3. SQL Data Types
Databases store data in different formats. The most common data types are:
- INT (Integer): For whole numbers.
- VARCHAR(n) or TEXT: For storing text data.
- DATE: For dates.
- DECIMAL: For precise decimal values, often used in financial calculations.

4. Basic SQL Queries
Here are some fundamental SQL operations:

- SELECT Statement: Used to retrieve data from a database.

     SELECT column1, column2 FROM table_name;

- WHERE Clause: Filters data based on conditions.

     SELECT * FROM table_name WHERE condition;

- ORDER BY: Sorts data in ascending (ASC) or descending (DESC) order.

     SELECT column1, column2 FROM table_name ORDER BY column1 ASC;

- LIMIT: Limits the number of rows returned.

     SELECT * FROM table_name LIMIT 5;

5. Filtering Data with WHERE Clause
The WHERE clause helps you filter data based on a condition:

   SELECT * FROM employees WHERE salary > 50000;

You can use comparison operators like:
- =: Equal to
- >: Greater than
- <: Less than
- LIKE: For pattern matching

6. Aggregating Data
SQL provides functions to summarize or aggregate data:
- COUNT(): Counts the number of rows.

     SELECT COUNT(*) FROM table_name;

- SUM(): Adds up values in a column.

     SELECT SUM(salary) FROM employees;

- AVG(): Calculates the average value.

     SELECT AVG(salary) FROM employees;

- GROUP BY: Groups rows that have the same values into summary rows.

     SELECT department, AVG(salary) FROM employees GROUP BY department;

7. Joins in SQL
Joins combine data from two or more tables:
- INNER JOIN: Retrieves records with matching values in both tables.

     SELECT employees.name, departments.department
FROM employees
INNER JOIN departments
ON employees.department_id = departments.id;

- LEFT JOIN: Retrieves all records from the left table and matched records from the right table.

     SELECT employees.name, departments.department
FROM employees
LEFT JOIN departments
ON employees.department_id = departments.id;

8. Inserting Data
To add new data to a table, you use the INSERT INTO statement:

   INSERT INTO employees (name, position, salary) VALUES ('John Doe', 'Analyst', 60000);

9. Updating Data
You can update existing data in a table using the UPDATE statement:

   UPDATE employees SET salary = 65000 WHERE name = 'John Doe';

10. Deleting Data
To remove data from a table, use the DELETE statement:

    DELETE FROM employees WHERE name = 'John Doe';


Here you can find essential SQL Interview Resources👇
https://news.1rj.ru/str/DataSimplifier

Like this post if you need more 👍❤️

Hope it helps :)
2
Build your Machine Learning Projects using Python in 6 steps
2
Machine learning is a subset of artificial intelligence that involves developing algorithms and models that enable computers to learn from and make predictions or decisions based on data. In machine learning, computers are trained on large datasets to identify patterns, relationships, and trends without being explicitly programmed to do so.

There are three main types of machine learning: supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, the algorithm is trained on labeled data, where the correct output is provided along with the input data. Unsupervised learning involves training the algorithm on unlabeled data, allowing it to identify patterns and relationships on its own. Reinforcement learning involves training an algorithm to make decisions by rewarding or punishing it based on its actions.

Machine learning algorithms can be used for a wide range of applications, including image and speech recognition, natural language processing, recommendation systems, predictive analytics, and more. These algorithms can be trained using various techniques such as neural networks, decision trees, support vector machines, and clustering algorithms.

Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

React ❤️ for more free resources
6
Are you looking to become a machine learning engineer? The algorithm brought you to the right place! 📌

I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:

Math & Statistics

Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.

Here are the probability units you will need to focus on:

Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra

Python:

You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking

Machine Learning Prerequisites:

Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data

Machine Learning Fundamentals

Using scikit-learn library in combination with other Python libraries for:

Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)

Solving two types of problems:
Regression
Classification

Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:

Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.

In Python, it’s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.

Deep Learning:

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.

Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models

Machine Learning Project Deployment

Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:

Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://news.1rj.ru/str/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊
10
🔍 Machine Learning Cheat Sheet 🔍

1. Key Concepts:
- Supervised Learning: Learn from labeled data (e.g., classification, regression).
- Unsupervised Learning: Discover patterns in unlabeled data (e.g., clustering, dimensionality reduction).
- Reinforcement Learning: Learn by interacting with an environment to maximize reward.

2. Common Algorithms:
- Linear Regression: Predict continuous values.
- Logistic Regression: Binary classification.
- Decision Trees: Simple, interpretable model for classification and regression.
- Random Forests: Ensemble method for improved accuracy.
- Support Vector Machines: Effective for high-dimensional spaces.
- K-Nearest Neighbors: Instance-based learning for classification/regression.
- K-Means: Clustering algorithm.
- Principal Component Analysis(PCA)

3. Performance Metrics:
- Classification: Accuracy, Precision, Recall, F1-Score, ROC-AUC.
- Regression: Mean Absolute Error (MAE), Mean Squared Error (MSE), R^2 Score.

4. Data Preprocessing:
- Normalization: Scale features to a standard range.
- Standardization: Transform features to have zero mean and unit variance.
- Imputation: Handle missing data.
- Encoding: Convert categorical data into numerical format.

5. Model Evaluation:
- Cross-Validation: Ensure model generalization.
- Train-Test Split: Divide data to evaluate model performance.

6. Libraries:
- Python: Scikit-Learn, TensorFlow, Keras, PyTorch, Pandas, Numpy, Matplotlib.
- R: caret, randomForest, e1071, ggplot2.

7. Tips for Success:
- Feature Engineering: Enhance data quality and relevance.
- Hyperparameter Tuning: Optimize model parameters (Grid Search, Random Search).
- Model Interpretability: Use tools like SHAP and LIME.
- Continuous Learning: Stay updated with the latest research and trends.

🚀 Dive into Machine Learning and transform data into insights! 🚀

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best 👍👍
7
Essential Data Science Concepts Everyone Should Know:

1. Data Types and Structures:

• Categorical: Nominal (unordered, e.g., colors) and Ordinal (ordered, e.g., education levels)

• Numerical: Discrete (countable, e.g., number of children) and Continuous (measurable, e.g., height)

• Data Structures: Arrays, Lists, Dictionaries, DataFrames (for organizing and manipulating data)

2. Denoscriptive Statistics:

• Measures of Central Tendency: Mean, Median, Mode (describing the typical value)

• Measures of Dispersion: Variance, Standard Deviation, Range (describing the spread of data)

• Visualizations: Histograms, Boxplots, Scatterplots (for understanding data distribution)

3. Probability and Statistics:

• Probability Distributions: Normal, Binomial, Poisson (modeling data patterns)

• Hypothesis Testing: Formulating and testing claims about data (e.g., A/B testing)

• Confidence Intervals: Estimating the range of plausible values for a population parameter

4. Machine Learning:

• Supervised Learning: Regression (predicting continuous values) and Classification (predicting categories)

• Unsupervised Learning: Clustering (grouping similar data points) and Dimensionality Reduction (simplifying data)

• Model Evaluation: Accuracy, Precision, Recall, F1-score (assessing model performance)

5. Data Cleaning and Preprocessing:

• Missing Value Handling: Imputation, Deletion (dealing with incomplete data)

• Outlier Detection and Removal: Identifying and addressing extreme values

• Feature Engineering: Creating new features from existing ones (e.g., combining variables)

6. Data Visualization:

• Types of Charts: Bar charts, Line charts, Pie charts, Heatmaps (for communicating insights visually)

• Principles of Effective Visualization: Clarity, Accuracy, Aesthetics (for conveying information effectively)

7. Ethical Considerations in Data Science:

• Data Privacy and Security: Protecting sensitive information

• Bias and Fairness: Ensuring algorithms are unbiased and fair

8. Programming Languages and Tools:

• Python: Popular for data science with libraries like NumPy, Pandas, Scikit-learn

• R: Statistical programming language with strong visualization capabilities

• SQL: For querying and manipulating data in databases

9. Big Data and Cloud Computing:

• Hadoop and Spark: Frameworks for processing massive datasets

• Cloud Platforms: AWS, Azure, Google Cloud (for storing and analyzing data)

10. Domain Expertise:

• Understanding the Data: Knowing the context and meaning of data is crucial for effective analysis

• Problem Framing: Defining the right questions and objectives for data-driven decision making

Bonus:

• Data Storytelling: Communicating insights and findings in a clear and engaging manner

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍
3
🚀 Become an Agentic AI Builder — Free 12‑Week Certification by Ready Tensor

Ready Tensor’s Agentic AI Developer Certification is a free, project first 12‑week program designed to help you build and deploy real-world agentic AI systems. You'll complete three portfolio-ready projects using tools like LangChain, LangGraph, and vector databases, while deploying production-ready agents with FastAPI or Streamlit.

The course focuses on developing autonomous AI agents that can plan, reason, use memory, and act safely in complex environments. Certification is earned not by watching lectures, but by building — each project is reviewed against rigorous standards.

You can start anytime, and new cohorts begin monthly. Ideal for developers and engineers ready to go beyond chat prompts and start building true agentic systems.

👉 Apply now: https://www.readytensor.ai/agentic-ai-cert/
5