Probability for Data Science
❤2
Random Module in Python 👆
❤5
4 Types of Data Analytics 👆
❤4
Machine Learning Algorithms Overview
▌1. Supervised Learning
Supervised learning algorithms learn from labeled data — input features with corresponding output labels.
- Linear Regression
- Used for predicting continuous numerical values.
- Example: Predicting house prices based on features like size, location.
- Learns the linear relationship between input variables and output.
- Logistic Regression
- Used for binary classification problems.
- Example: Spam detection (spam or not spam).
- Outputs probabilities using a logistic (sigmoid) function.
- Decision Trees
- Used for classification and regression.
- Splits data based on feature values to make predictions.
- Easy to interpret but can overfit if not pruned.
- Random Forest
- An ensemble of decision trees.
- Reduces overfitting by averaging multiple trees.
- Good accuracy and robustness.
- Support Vector Machines (SVM)
- Used for classification tasks.
- Finds the hyperplane that best separates classes with maximum margin.
- Can handle non-linear boundaries with kernel tricks.
- K-Nearest Neighbors (KNN)
- Classification and regression based on proximity to neighbors.
- Simple but computationally expensive on large datasets.
- Gradient Boosting Machines (GBM), XGBoost, LightGBM
- Ensemble methods that build models sequentially to correct previous errors.
- Powerful, widely used for structured/tabular data.
- Neural Networks (Basic)
- Can be used for both regression and classification.
- Consists of layers of interconnected nodes (neurons).
- Basis for deep learning but also useful in simpler forms.
▌2. Unsupervised Learning
Unsupervised algorithms learn patterns from unlabeled data.
- K-Means Clustering
- Groups data into K clusters based on feature similarity.
- Used for customer segmentation, anomaly detection.
- Hierarchical Clustering
- Builds a tree of clusters (dendrogram).
- Useful for understanding data structure.
- Principal Component Analysis (PCA)
- Dimensionality reduction technique.
- Projects data into fewer dimensions while preserving variance.
- Helps in visualization and noise reduction.
- Autoencoders (Neural Networks)
- Learn efficient data encodings.
- Used for anomaly detection and data compression.
▌3. Reinforcement Learning (Brief)
- Learns by interacting with an environment to maximize cumulative reward.
- Used in robotics, game playing (e.g., AlphaGo), recommendation systems.
▌4. Other Important Algorithms and Concepts
- Naive Bayes
- Probabilistic classifier based on Bayes theorem.
- Assumes feature independence.
- Fast and effective for text classification.
- Dimensionality Reduction
- Techniques like t-SNE, UMAP for visualization and noise reduction.
- Deep Learning (Advanced Neural Networks)
- Convolutional Neural Networks (CNN) for images.
- Recurrent Neural Networks (RNN), LSTM for sequence data.
React ♥️ for more
▌1. Supervised Learning
Supervised learning algorithms learn from labeled data — input features with corresponding output labels.
- Linear Regression
- Used for predicting continuous numerical values.
- Example: Predicting house prices based on features like size, location.
- Learns the linear relationship between input variables and output.
- Logistic Regression
- Used for binary classification problems.
- Example: Spam detection (spam or not spam).
- Outputs probabilities using a logistic (sigmoid) function.
- Decision Trees
- Used for classification and regression.
- Splits data based on feature values to make predictions.
- Easy to interpret but can overfit if not pruned.
- Random Forest
- An ensemble of decision trees.
- Reduces overfitting by averaging multiple trees.
- Good accuracy and robustness.
- Support Vector Machines (SVM)
- Used for classification tasks.
- Finds the hyperplane that best separates classes with maximum margin.
- Can handle non-linear boundaries with kernel tricks.
- K-Nearest Neighbors (KNN)
- Classification and regression based on proximity to neighbors.
- Simple but computationally expensive on large datasets.
- Gradient Boosting Machines (GBM), XGBoost, LightGBM
- Ensemble methods that build models sequentially to correct previous errors.
- Powerful, widely used for structured/tabular data.
- Neural Networks (Basic)
- Can be used for both regression and classification.
- Consists of layers of interconnected nodes (neurons).
- Basis for deep learning but also useful in simpler forms.
▌2. Unsupervised Learning
Unsupervised algorithms learn patterns from unlabeled data.
- K-Means Clustering
- Groups data into K clusters based on feature similarity.
- Used for customer segmentation, anomaly detection.
- Hierarchical Clustering
- Builds a tree of clusters (dendrogram).
- Useful for understanding data structure.
- Principal Component Analysis (PCA)
- Dimensionality reduction technique.
- Projects data into fewer dimensions while preserving variance.
- Helps in visualization and noise reduction.
- Autoencoders (Neural Networks)
- Learn efficient data encodings.
- Used for anomaly detection and data compression.
▌3. Reinforcement Learning (Brief)
- Learns by interacting with an environment to maximize cumulative reward.
- Used in robotics, game playing (e.g., AlphaGo), recommendation systems.
▌4. Other Important Algorithms and Concepts
- Naive Bayes
- Probabilistic classifier based on Bayes theorem.
- Assumes feature independence.
- Fast and effective for text classification.
- Dimensionality Reduction
- Techniques like t-SNE, UMAP for visualization and noise reduction.
- Deep Learning (Advanced Neural Networks)
- Convolutional Neural Networks (CNN) for images.
- Recurrent Neural Networks (RNN), LSTM for sequence data.
React ♥️ for more
❤5