Machine Learning & Artificial Intelligence | Data Science Free Courses – Telegram
Machine Learning & Artificial Intelligence | Data Science Free Courses
63.7K subscribers
553 photos
2 videos
98 files
421 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
Want to become a Data Scientist?

Here’s a quick roadmap with essential concepts:

1. Mathematics & Statistics

Linear Algebra: Matrix operations, eigenvalues, eigenvectors, and decomposition, which are crucial for machine learning.

Probability & Statistics: Hypothesis testing, probability distributions, Bayesian inference, confidence intervals, and statistical significance.

Calculus: Derivatives, integrals, and gradients, especially partial derivatives, which are essential for understanding model optimization.


2. Programming

Python or R: Choose a primary programming language for data science.

Python: Libraries like NumPy, Pandas for data manipulation, and Scikit-Learn for machine learning.

R: Especially popular in academia and finance, with libraries like dplyr and ggplot2 for data manipulation and visualization.


SQL: Master querying and database management, essential for accessing, joining, and filtering large datasets.


3. Data Wrangling & Preprocessing

Data Cleaning: Handle missing values, outliers, duplicates, and data formatting.
Feature Engineering: Create meaningful features, handle categorical variables, and apply transformations (scaling, encoding, etc.).
Exploratory Data Analysis (EDA): Visualize data distributions, correlations, and trends to generate hypotheses and insights.


4. Data Visualization

Python Libraries: Use Matplotlib, Seaborn, and Plotly to visualize data.
Tableau or Power BI: Learn interactive visualization tools for building dashboards.
Storytelling: Develop skills to interpret and present data in a meaningful way to stakeholders.


5. Machine Learning

Supervised Learning: Understand algorithms like Linear Regression, Logistic Regression, Decision Trees, Random Forest, Gradient Boosting, and Support Vector Machines (SVM).
Unsupervised Learning: Study clustering (K-means, DBSCAN) and dimensionality reduction (PCA, t-SNE).
Evaluation Metrics: Understand accuracy, precision, recall, F1-score for classification and RMSE, MAE for regression.


6. Advanced Machine Learning & Deep Learning

Neural Networks: Understand the basics of neural networks and backpropagation.
Deep Learning: Get familiar with Convolutional Neural Networks (CNNs) for image processing and Recurrent Neural Networks (RNNs) for sequential data.
Transfer Learning: Apply pre-trained models for specific use cases.
Frameworks: Use TensorFlow Keras for building deep learning models.


7. Natural Language Processing (NLP)

Text Preprocessing: Tokenization, stemming, lemmatization, stop-word removal.
NLP Techniques: Understand bag-of-words, TF-IDF, and word embeddings (Word2Vec, GloVe).
NLP Models: Work with recurrent neural networks (RNNs), transformers (BERT, GPT) for text classification, sentiment analysis, and translation.


8. Big Data Tools (Optional)

Distributed Data Processing: Learn Hadoop and Spark for handling large datasets. Use Google BigQuery for big data storage and processing.


9. Data Science Workflows & Pipelines (Optional)

ETL & Data Pipelines: Extract, Transform, and Load data using tools like Apache Airflow for automation. Set up reproducible workflows for data transformation, modeling, and monitoring.
Model Deployment: Deploy models in production using Flask, FastAPI, or cloud services (AWS SageMaker, Google AI Platform).


10. Model Validation & Tuning

Cross-Validation: Techniques like K-fold cross-validation to avoid overfitting.
Hyperparameter Tuning: Use Grid Search, Random Search, and Bayesian Optimization to optimize model performance.
Bias-Variance Trade-off: Understand how to balance bias and variance in models for better generalization.


11. Time Series Analysis

Statistical Models: ARIMA, SARIMA, and Holt-Winters for time-series forecasting.
Time Series: Handle seasonality, trends, and lags. Use LSTMs or Prophet for more advanced time-series forecasting.


12. Experimentation & A/B Testing

Experiment Design: Learn how to set up and analyze controlled experiments.
A/B Testing: Statistical techniques for comparing groups & measuring the impact of changes.

ENJOY LEARNING 👍👍

#datascience
1
📖 Struggling with SQL commands
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2
📚👀🚀Preparing for a Data science/ Data Analytics interview can be challenging, but with the right strategy, you can enhance your chances of success. Here are some key tips to assist you in getting ready:

Review Fundamental Concepts: Ensure you have a strong grasp of statistics, probability, linear algebra, data structures, algorithms, and programming languages like Python, R, and SQL.

Refresh Machine Learning Knowledge: Familiarize yourself with various machine learning algorithms, including supervised, unsupervised, and reinforcement learning.

Practice Coding: Sharpen your coding skills by solving data science-related problems on platforms like HackerRank, LeetCode, and Kaggle.

Build a Project Portfolio: Showcase your proficiency by creating a portfolio highlighting projects covering data cleaning, wrangling, exploratory data analysis, and machine learning.

Hone Communication Skills: Practice articulating complex technical ideas in simple terms, as effective communication is vital for data scientists when interacting with non-technical stakeholders.

Research the Company: Gain insights into the company's operations, industry, and how they leverage data to solve challenges.

🧠👍By adhering to these guidelines, you'll be well-prepared for your upcoming data science interview. Best of luck!

Hope this helps 👍❤️:⁠-⁠)
5
Guys, Big Announcement!

We’ve officially hit 2.5 Million followers — and it’s time to level up together! ❤️

I’m launching a Python Projects Series — designed for beginners to those preparing for technical interviews or building real-world projects.

This will be a step-by-step, hands-on journey — where you’ll build useful Python projects with clear code, explanations, and mini-quizzes!

Here’s what we’ll cover:

🔹 Week 1: Python Mini Projects (Daily Practice)
⦁ Calculator
⦁ To-Do List (CLI)
⦁ Number Guessing Game
⦁ Unit Converter
⦁ Digital Clock

🔹 Week 2: Data Handling & APIs
⦁ Read/Write CSV & Excel files
⦁ JSON parsing
⦁ API Calls using Requests
⦁ Weather App using OpenWeather API
⦁ Currency Converter using Real-time API

🔹 Week 3: Automation with Python
⦁ File Organizer Script
⦁ Email Sender
⦁ WhatsApp Automation
⦁ PDF Merger
⦁ Excel Report Generator

🔹 Week 4: Data Analysis with Pandas & Matplotlib
⦁ Load & Clean CSV
⦁ Data Aggregation
⦁ Data Visualization
⦁ Trend Analysis
⦁ Dashboard Basics

🔹 Week 5: AI & ML Projects (Beginner Friendly)
⦁ Predict House Prices
⦁ Email Spam Classifier
⦁ Sentiment Analysis
⦁ Image Classification (Intro)
⦁ Basic Chatbot

📌 Each project includes: 
Problem Statement 
Code with explanation 
Sample input/output 
Learning outcome 
Mini quiz

💬 React ❤️ if you're ready to build some projects together!

You can access it for free here
👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Let’s Build. Let’s Grow. 💻🙌
8