If I were to start my Machine Learning career from scratch (as an engineer), I'd focus here (no specific order):
1. SQL
2. Python
3. ML fundamentals
4. DSA
5. Testing
6. Prob, stats, lin. alg
7. Problem solving
And building as much as possible.
1. SQL
2. Python
3. ML fundamentals
4. DSA
5. Testing
6. Prob, stats, lin. alg
7. Problem solving
And building as much as possible.
👍29❤1
✅ Best Telegram channels to get free coding & data science resources
https://news.1rj.ru/str/addlist/ID95piZJZa0wYzk5
✅ Free Courses with Certificate:
https://news.1rj.ru/str/free4unow_backup
https://news.1rj.ru/str/addlist/ID95piZJZa0wYzk5
✅ Free Courses with Certificate:
https://news.1rj.ru/str/free4unow_backup
👍8
How to get started with data science
Many people who get interested in learning data science don't really know what it's all about.
They start coding just for the sake of it and on first challenge or problem they can't solve, they quit.
Just like other disciplines in tech, data science is challenging and requires a level of critical thinking and problem solving attitude.
If you're among people who want to get started with data science but don't know how - I have something amazing for you!
I created Best Data Science & Machine Learning Resources that will help you organize your career in data.
Happy learning 😄😄
Many people who get interested in learning data science don't really know what it's all about.
They start coding just for the sake of it and on first challenge or problem they can't solve, they quit.
Just like other disciplines in tech, data science is challenging and requires a level of critical thinking and problem solving attitude.
If you're among people who want to get started with data science but don't know how - I have something amazing for you!
I created Best Data Science & Machine Learning Resources that will help you organize your career in data.
Happy learning 😄😄
👍15
Preparing for a data science interview can be challenging, but with the right approach, you can increase your chances of success. Here are some tips to help you prepare for your next data science interview:
👉 1. Review the Fundamentals: Make sure you have a thorough understanding of the fundamentals of statistics, probability, and linear algebra. You should also be familiar with data structures, algorithms, and programming languages like Python, R, and SQL.
👉 2. Brush up on Machine Learning: Machine learning is a key aspect of data science. Make sure you have a solid understanding of different types of machine learning algorithms like supervised, unsupervised, and reinforcement learning.
👉 3. Practice Coding: Practice coding questions related to data structures, algorithms, and data science problems. You can use online resources like HackerRank, LeetCode, and Kaggle to practice.
👉 4. Build a Portfolio: Create a portfolio of projects that demonstrate your data science skills. This can include data cleaning, data wrangling, exploratory data analysis, and machine learning projects.
👉 5. Practice Communication: Data scientists are expected to effectively communicate complex technical concepts to non-technical stakeholders. Practice explaining your projects and technical concepts in simple terms.
👉 6. Research the Company: Research the company you are interviewing with and their industry. Understand how they use data and what data science problems they are trying to solve.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
👉 1. Review the Fundamentals: Make sure you have a thorough understanding of the fundamentals of statistics, probability, and linear algebra. You should also be familiar with data structures, algorithms, and programming languages like Python, R, and SQL.
👉 2. Brush up on Machine Learning: Machine learning is a key aspect of data science. Make sure you have a solid understanding of different types of machine learning algorithms like supervised, unsupervised, and reinforcement learning.
👉 3. Practice Coding: Practice coding questions related to data structures, algorithms, and data science problems. You can use online resources like HackerRank, LeetCode, and Kaggle to practice.
👉 4. Build a Portfolio: Create a portfolio of projects that demonstrate your data science skills. This can include data cleaning, data wrangling, exploratory data analysis, and machine learning projects.
👉 5. Practice Communication: Data scientists are expected to effectively communicate complex technical concepts to non-technical stakeholders. Practice explaining your projects and technical concepts in simple terms.
👉 6. Research the Company: Research the company you are interviewing with and their industry. Understand how they use data and what data science problems they are trying to solve.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
👍20❤1
Machine Learning & Artificial Intelligence | Data Science Free Courses
Statistics Interview Q&A.pdf
Thanks for the amazing response, you guys are best ❤️
👍18
Coding and Aptitude Round before interview
Coding challenges are meant to test your coding skills (especially if you are applying for ML engineer role). The coding challenges can contain algorithm and data structures problems of varying difficulty. These challenges will be timed based on how complicated the questions are. These are intended to test your basic algorithmic thinking.
Sometimes, a complicated data science question like making predictions based on twitter data are also given. These challenges are hosted on HackerRank, HackerEarth, CoderByte etc. In addition, you may even be asked multiple-choice questions on the fundamentals of data science and statistics. This round is meant to be a filtering round where candidates whose fundamentals are little shaky are eliminated. These rounds are typically conducted without any manual intervention, so it is important to be well prepared for this round.
Sometimes a separate Aptitude test is conducted or along with the technical round an aptitude test is also conducted to assess your aptitude skills. A Data Scientist is expected to have a good aptitude as this field is continuously evolving and a Data Scientist encounters new challenges every day. If you have appeared for GMAT / GRE or CAT, this should be easy for you.
Resources for Prep:
For algorithms and data structures prep,Leetcode and Hackerrank are good resources.
For aptitude prep, you can refer to IndiaBixand Practice Aptitude.
With respect to data science challenges, practice well on GLabs and Kaggle.
Brilliant is an excellent resource for tricky math and statistics questions.
For practising SQL, SQL Zoo and Mode Analytics are good resources that allow you to solve the exercises in the browser itself.
Things to Note:
Ensure that you are calm and relaxed before you attempt to answer the challenge. Read through all the questions before you start attempting the same. Let your mind go into problem-solving mode before your fingers do!
In case, you are finished with the test before time, recheck your answers and then submit.
Sometimes these rounds don’t go your way, you might have had a brain fade, it was not your day etc. Don’t worry! Shake if off for there is always a next time and this is not the end of the world.
Coding challenges are meant to test your coding skills (especially if you are applying for ML engineer role). The coding challenges can contain algorithm and data structures problems of varying difficulty. These challenges will be timed based on how complicated the questions are. These are intended to test your basic algorithmic thinking.
Sometimes, a complicated data science question like making predictions based on twitter data are also given. These challenges are hosted on HackerRank, HackerEarth, CoderByte etc. In addition, you may even be asked multiple-choice questions on the fundamentals of data science and statistics. This round is meant to be a filtering round where candidates whose fundamentals are little shaky are eliminated. These rounds are typically conducted without any manual intervention, so it is important to be well prepared for this round.
Sometimes a separate Aptitude test is conducted or along with the technical round an aptitude test is also conducted to assess your aptitude skills. A Data Scientist is expected to have a good aptitude as this field is continuously evolving and a Data Scientist encounters new challenges every day. If you have appeared for GMAT / GRE or CAT, this should be easy for you.
Resources for Prep:
For algorithms and data structures prep,Leetcode and Hackerrank are good resources.
For aptitude prep, you can refer to IndiaBixand Practice Aptitude.
With respect to data science challenges, practice well on GLabs and Kaggle.
Brilliant is an excellent resource for tricky math and statistics questions.
For practising SQL, SQL Zoo and Mode Analytics are good resources that allow you to solve the exercises in the browser itself.
Things to Note:
Ensure that you are calm and relaxed before you attempt to answer the challenge. Read through all the questions before you start attempting the same. Let your mind go into problem-solving mode before your fingers do!
In case, you are finished with the test before time, recheck your answers and then submit.
Sometimes these rounds don’t go your way, you might have had a brain fade, it was not your day etc. Don’t worry! Shake if off for there is always a next time and this is not the end of the world.
👍16
Three different learning styles in machine learning algorithms:
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
👍29
Machine Learning Algorithm 🤖
Now onwards, let's explore the fundamentals of machine learning from linear regression to K-means clustering! & I will post some of the core algorithms that power many real-world Al applications.
Like this post if you want me to post it daily 😄👍
Share this channel link with your friends: https://news.1rj.ru/str/datasciencefree
Now onwards, let's explore the fundamentals of machine learning from linear regression to K-means clustering! & I will post some of the core algorithms that power many real-world Al applications.
Like this post if you want me to post it daily 😄👍
Share this channel link with your friends: https://news.1rj.ru/str/datasciencefree
👍86❤19
Let's start with Linear Regression
Here you can find detailed explanation: https://news.1rj.ru/str/datasciencefun/1713
Here you can find detailed explanation: https://news.1rj.ru/str/datasciencefun/1713
👍20❤2