Stop learning data science. Start doing this instead.
Here are 5 practical projects that teach more:
- Predict customer churn for a business
- Create a recommendation system for movies
- Analyse social media sentiment for a brand
- Predict house prices in your area
- Build a fraud detection system
Real-world experience is invaluable.
These projects force you to:
• Clean messy data
• Apply algorithms to solve problems
• Build end-to-end solutions
Don't just learn. Do.
Start small. Learn as you go. Embrace the challenges.
Real projects teach more than courses ever will.
Here are 5 practical projects that teach more:
- Predict customer churn for a business
- Create a recommendation system for movies
- Analyse social media sentiment for a brand
- Predict house prices in your area
- Build a fraud detection system
Real-world experience is invaluable.
These projects force you to:
• Clean messy data
• Apply algorithms to solve problems
• Build end-to-end solutions
Don't just learn. Do.
Start small. Learn as you go. Embrace the challenges.
Real projects teach more than courses ever will.
👍16❤10🔥1🤩1
Let's start with Linear Regression
Here you can find detailed explanation: https://news.1rj.ru/str/datasciencefun/1713
Here you can find detailed explanation: https://news.1rj.ru/str/datasciencefun/1713
👍23❤5👏2🔥1
Neural Networks and Deep Learning
Neural networks and deep learning are integral parts of artificial intelligence (AI) and machine learning (ML). Here's an overview:
1.Neural Networks: Neural networks are computational models inspired by the human brain's structure and functioning. They consist of interconnected nodes (neurons) organized in layers: input layer, hidden layers, and output layer.
Each neuron receives input, processes it through an activation function, and passes the output to the next layer. Neurons in subsequent layers perform more complex computations based on previous layers' outputs.
Neural networks learn by adjusting weights and biases associated with connections between neurons through a process called training. This is typically done using optimization techniques like gradient descent and backpropagation.
2.Deep Learning : Deep learning is a subset of ML that uses neural networks with multiple layers (hence the term "deep"), allowing them to learn hierarchical representations of data.
These networks can automatically discover patterns, features, and representations in raw data, making them powerful for tasks like image recognition, natural language processing (NLP), speech recognition, and more.
Deep learning architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Transformer models have demonstrated exceptional performance in various domains.
3.Applications Computer Vision: Object detection, image classification, facial recognition, etc., leveraging CNNs.
Natural Language Processing (NLP) Language translation, sentiment analysis, chatbots, etc., utilizing RNNs, LSTMs, and Transformers.
Speech Recognition: Speech-to-text systems using deep neural networks.
4.Challenges and Advancements: Training deep neural networks often requires large amounts of data and computational resources. Techniques like transfer learning, regularization, and optimization algorithms aim to address these challenges.
Advancements in hardware (GPUs, TPUs), algorithms (improved architectures like GANs - Generative Adversarial Networks), and techniques (attention mechanisms) have significantly contributed to the success of deep learning.
5. Frameworks and Libraries: There are various open-source libraries and frameworks (TensorFlow, PyTorch, Keras, etc.) that provide tools and APIs for building, training, and deploying neural networks and deep learning models.
Join for more: https://news.1rj.ru/str/machinelearning_deeplearning
Neural networks and deep learning are integral parts of artificial intelligence (AI) and machine learning (ML). Here's an overview:
1.Neural Networks: Neural networks are computational models inspired by the human brain's structure and functioning. They consist of interconnected nodes (neurons) organized in layers: input layer, hidden layers, and output layer.
Each neuron receives input, processes it through an activation function, and passes the output to the next layer. Neurons in subsequent layers perform more complex computations based on previous layers' outputs.
Neural networks learn by adjusting weights and biases associated with connections between neurons through a process called training. This is typically done using optimization techniques like gradient descent and backpropagation.
2.Deep Learning : Deep learning is a subset of ML that uses neural networks with multiple layers (hence the term "deep"), allowing them to learn hierarchical representations of data.
These networks can automatically discover patterns, features, and representations in raw data, making them powerful for tasks like image recognition, natural language processing (NLP), speech recognition, and more.
Deep learning architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Transformer models have demonstrated exceptional performance in various domains.
3.Applications Computer Vision: Object detection, image classification, facial recognition, etc., leveraging CNNs.
Natural Language Processing (NLP) Language translation, sentiment analysis, chatbots, etc., utilizing RNNs, LSTMs, and Transformers.
Speech Recognition: Speech-to-text systems using deep neural networks.
4.Challenges and Advancements: Training deep neural networks often requires large amounts of data and computational resources. Techniques like transfer learning, regularization, and optimization algorithms aim to address these challenges.
Advancements in hardware (GPUs, TPUs), algorithms (improved architectures like GANs - Generative Adversarial Networks), and techniques (attention mechanisms) have significantly contributed to the success of deep learning.
5. Frameworks and Libraries: There are various open-source libraries and frameworks (TensorFlow, PyTorch, Keras, etc.) that provide tools and APIs for building, training, and deploying neural networks and deep learning models.
Join for more: https://news.1rj.ru/str/machinelearning_deeplearning
👍7❤1
Are you looking to become a machine learning engineer? 🤖
The algorithm brought you to the right place! 🚀
I created a free and comprehensive roadmap. Let’s go through this thread and explore what you need to know to become an expert machine learning engineer:
📚 Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Here’s what you need to focus on:
- Basic probability concepts 🎲
- Inferential statistics 📊
- Regression analysis 📈
- Experimental design & A/B testing 🔍
- Bayesian statistics 🔢
- Calculus 🧮
- Linear algebra 🔠
🐍 Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
- Variables, data types, and basic operations ✏️
- Control flow statements (e.g., if-else, loops) 🔄
- Functions and modules 🔧
- Error handling and exceptions ❌
- Basic data structures (e.g., lists, dictionaries, tuples) 🗂️
- Object-oriented programming concepts 🧱
- Basic work with APIs 🌐
- Detailed data structures and algorithmic thinking 🧠
🧪 Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas 🔍
- Data visualization techniques to visualize variables 📉
- Feature extraction & engineering 🛠️
- Encoding data (different types) 🔐
⚙️ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:
- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees 📊
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering 🧠
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients 🕹️
Solve two types of problems:
- Regression 📈
- Classification 🧩
🧠 Neural Networks
Neural networks are like computer brains that learn from examples 🧠, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops 🔄
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns 🖼️
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series 📚
In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.
🕸️ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.
- CNNs 🖼️
- RNNs 📝
- LSTMs ⏳
🚀 Machine Learning Project Deployment
Machine learning engineers should dive into MLOps and project deployment.
Here are the must-have skills:
- Version Control for Data and Models 🗃️
- Automated Testing and Continuous Integration (CI) 🔄
- Continuous Delivery and Deployment (CD) 🚚
- Monitoring and Logging 🖥️
- Experiment Tracking and Management 🧪
- Feature Stores 🗂️
- Data Pipeline and Workflow Orchestration 🛠️
- Infrastructure as Code (IaC) 🏗️
- Model Serving and APIs 🌐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
The algorithm brought you to the right place! 🚀
I created a free and comprehensive roadmap. Let’s go through this thread and explore what you need to know to become an expert machine learning engineer:
📚 Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Here’s what you need to focus on:
- Basic probability concepts 🎲
- Inferential statistics 📊
- Regression analysis 📈
- Experimental design & A/B testing 🔍
- Bayesian statistics 🔢
- Calculus 🧮
- Linear algebra 🔠
🐍 Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
- Variables, data types, and basic operations ✏️
- Control flow statements (e.g., if-else, loops) 🔄
- Functions and modules 🔧
- Error handling and exceptions ❌
- Basic data structures (e.g., lists, dictionaries, tuples) 🗂️
- Object-oriented programming concepts 🧱
- Basic work with APIs 🌐
- Detailed data structures and algorithmic thinking 🧠
🧪 Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas 🔍
- Data visualization techniques to visualize variables 📉
- Feature extraction & engineering 🛠️
- Encoding data (different types) 🔐
⚙️ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:
- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees 📊
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering 🧠
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients 🕹️
Solve two types of problems:
- Regression 📈
- Classification 🧩
🧠 Neural Networks
Neural networks are like computer brains that learn from examples 🧠, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops 🔄
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns 🖼️
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series 📚
In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.
🕸️ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.
- CNNs 🖼️
- RNNs 📝
- LSTMs ⏳
🚀 Machine Learning Project Deployment
Machine learning engineers should dive into MLOps and project deployment.
Here are the must-have skills:
- Version Control for Data and Models 🗃️
- Automated Testing and Continuous Integration (CI) 🔄
- Continuous Delivery and Deployment (CD) 🚚
- Monitoring and Logging 🖥️
- Experiment Tracking and Management 🧪
- Feature Stores 🗂️
- Data Pipeline and Workflow Orchestration 🛠️
- Infrastructure as Code (IaC) 🏗️
- Model Serving and APIs 🌐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
👍14❤5
Coding and Aptitude Round before interview
Coding challenges are meant to test your coding skills (especially if you are applying for ML engineer role). The coding challenges can contain algorithm and data structures problems of varying difficulty. These challenges will be timed based on how complicated the questions are. These are intended to test your basic algorithmic thinking.
Sometimes, a complicated data science question like making predictions based on twitter data are also given. These challenges are hosted on HackerRank, HackerEarth, CoderByte etc. In addition, you may even be asked multiple-choice questions on the fundamentals of data science and statistics. This round is meant to be a filtering round where candidates whose fundamentals are little shaky are eliminated. These rounds are typically conducted without any manual intervention, so it is important to be well prepared for this round.
Sometimes a separate Aptitude test is conducted or along with the technical round an aptitude test is also conducted to assess your aptitude skills. A Data Scientist is expected to have a good aptitude as this field is continuously evolving and a Data Scientist encounters new challenges every day. If you have appeared for GMAT / GRE or CAT, this should be easy for you.
Resources for Prep:
For algorithms and data structures prep,Leetcode and Hackerrank are good resources.
For aptitude prep, you can refer to IndiaBixand Practice Aptitude.
With respect to data science challenges, practice well on GLabs and Kaggle.
Brilliant is an excellent resource for tricky math and statistics questions.
For practising SQL, SQL Zoo and Mode Analytics are good resources that allow you to solve the exercises in the browser itself.
Things to Note:
Ensure that you are calm and relaxed before you attempt to answer the challenge. Read through all the questions before you start attempting the same. Let your mind go into problem-solving mode before your fingers do!
In case, you are finished with the test before time, recheck your answers and then submit.
Sometimes these rounds don’t go your way, you might have had a brain fade, it was not your day etc. Don’t worry! Shake if off for there is always a next time and this is not the end of the world.
Coding challenges are meant to test your coding skills (especially if you are applying for ML engineer role). The coding challenges can contain algorithm and data structures problems of varying difficulty. These challenges will be timed based on how complicated the questions are. These are intended to test your basic algorithmic thinking.
Sometimes, a complicated data science question like making predictions based on twitter data are also given. These challenges are hosted on HackerRank, HackerEarth, CoderByte etc. In addition, you may even be asked multiple-choice questions on the fundamentals of data science and statistics. This round is meant to be a filtering round where candidates whose fundamentals are little shaky are eliminated. These rounds are typically conducted without any manual intervention, so it is important to be well prepared for this round.
Sometimes a separate Aptitude test is conducted or along with the technical round an aptitude test is also conducted to assess your aptitude skills. A Data Scientist is expected to have a good aptitude as this field is continuously evolving and a Data Scientist encounters new challenges every day. If you have appeared for GMAT / GRE or CAT, this should be easy for you.
Resources for Prep:
For algorithms and data structures prep,Leetcode and Hackerrank are good resources.
For aptitude prep, you can refer to IndiaBixand Practice Aptitude.
With respect to data science challenges, practice well on GLabs and Kaggle.
Brilliant is an excellent resource for tricky math and statistics questions.
For practising SQL, SQL Zoo and Mode Analytics are good resources that allow you to solve the exercises in the browser itself.
Things to Note:
Ensure that you are calm and relaxed before you attempt to answer the challenge. Read through all the questions before you start attempting the same. Let your mind go into problem-solving mode before your fingers do!
In case, you are finished with the test before time, recheck your answers and then submit.
Sometimes these rounds don’t go your way, you might have had a brain fade, it was not your day etc. Don’t worry! Shake if off for there is always a next time and this is not the end of the world.
👍13❤1
Common Machine Learning Algorithms!
1️⃣ Linear Regression
->Used for predicting continuous values.
->Models the relationship between dependent and independent variables by fitting a linear equation.
2️⃣ Logistic Regression
->Ideal for binary classification problems.
->Estimates the probability that an instance belongs to a particular class.
3️⃣ Decision Trees
->Splits data into subsets based on the value of input features.
->Easy to visualize and interpret but can be prone to overfitting.
4️⃣ Random Forest
->An ensemble method using multiple decision trees.
->Reduces overfitting and improves accuracy by averaging multiple trees.
5️⃣ Support Vector Machines (SVM)
->Finds the hyperplane that best separates different classes.
->Effective in high-dimensional spaces and for classification tasks.
6️⃣ k-Nearest Neighbors (k-NN)
->Classifies data based on the majority class among the k-nearest neighbors.
->Simple and intuitive but can be computationally intensive.
7️⃣ K-Means Clustering
->Partitions data into k clusters based on feature similarity.
->Useful for market segmentation, image compression, and more.
8️⃣ Naive Bayes
->Based on Bayes' theorem with an assumption of independence among predictors.
->Particularly useful for text classification and spam filtering.
9️⃣ Neural Networks
->Mimic the human brain to identify patterns in data.
->Power deep learning applications, from image recognition to natural language processing.
🔟 Gradient Boosting Machines (GBM)
->Combines weak learners to create a strong predictive model.
->Used in various applications like ranking, classification, and regression.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
1️⃣ Linear Regression
->Used for predicting continuous values.
->Models the relationship between dependent and independent variables by fitting a linear equation.
2️⃣ Logistic Regression
->Ideal for binary classification problems.
->Estimates the probability that an instance belongs to a particular class.
3️⃣ Decision Trees
->Splits data into subsets based on the value of input features.
->Easy to visualize and interpret but can be prone to overfitting.
4️⃣ Random Forest
->An ensemble method using multiple decision trees.
->Reduces overfitting and improves accuracy by averaging multiple trees.
5️⃣ Support Vector Machines (SVM)
->Finds the hyperplane that best separates different classes.
->Effective in high-dimensional spaces and for classification tasks.
6️⃣ k-Nearest Neighbors (k-NN)
->Classifies data based on the majority class among the k-nearest neighbors.
->Simple and intuitive but can be computationally intensive.
7️⃣ K-Means Clustering
->Partitions data into k clusters based on feature similarity.
->Useful for market segmentation, image compression, and more.
8️⃣ Naive Bayes
->Based on Bayes' theorem with an assumption of independence among predictors.
->Particularly useful for text classification and spam filtering.
9️⃣ Neural Networks
->Mimic the human brain to identify patterns in data.
->Power deep learning applications, from image recognition to natural language processing.
🔟 Gradient Boosting Machines (GBM)
->Combines weak learners to create a strong predictive model.
->Used in various applications like ranking, classification, and regression.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
👍10❤5👏4
Many people pay too much to learn Data Science, but my mission is to break down barriers. I have shared complete learning series to learn Data Science algorithms from scratch.
Here are the links to the Data Science series 👇👇
Complete Data Science Algorithms: https://news.1rj.ru/str/datasciencefun/1708
Part-1: https://news.1rj.ru/str/datasciencefun/1710
Part-2: https://news.1rj.ru/str/datasciencefun/1716
Part-3: https://news.1rj.ru/str/datasciencefun/1718
Part-4: https://news.1rj.ru/str/datasciencefun/1719
Part-5: https://news.1rj.ru/str/datasciencefun/1723
Part-6: https://news.1rj.ru/str/datasciencefun/1724
Part-7: https://news.1rj.ru/str/datasciencefun/1725
Part-8: https://news.1rj.ru/str/datasciencefun/1726
Part-9: https://news.1rj.ru/str/datasciencefun/1729
Part-10: https://news.1rj.ru/str/datasciencefun/1730
Part-11: https://news.1rj.ru/str/datasciencefun/1733
Part-12:
https://news.1rj.ru/str/datasciencefun/1734
Part-13: https://news.1rj.ru/str/datasciencefun/1739
Part-14: https://news.1rj.ru/str/datasciencefun/1742
Part-15: https://news.1rj.ru/str/datasciencefun/1748
Part-16: https://news.1rj.ru/str/datasciencefun/1750
Part-17: https://news.1rj.ru/str/datasciencefun/1753
Part-18: https://news.1rj.ru/str/datasciencefun/1754
Part-19: https://news.1rj.ru/str/datasciencefun/1759
Part-20: https://news.1rj.ru/str/datasciencefun/1765
Part-21: https://news.1rj.ru/str/datasciencefun/1768
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
Here are the links to the Data Science series 👇👇
Complete Data Science Algorithms: https://news.1rj.ru/str/datasciencefun/1708
Part-1: https://news.1rj.ru/str/datasciencefun/1710
Part-2: https://news.1rj.ru/str/datasciencefun/1716
Part-3: https://news.1rj.ru/str/datasciencefun/1718
Part-4: https://news.1rj.ru/str/datasciencefun/1719
Part-5: https://news.1rj.ru/str/datasciencefun/1723
Part-6: https://news.1rj.ru/str/datasciencefun/1724
Part-7: https://news.1rj.ru/str/datasciencefun/1725
Part-8: https://news.1rj.ru/str/datasciencefun/1726
Part-9: https://news.1rj.ru/str/datasciencefun/1729
Part-10: https://news.1rj.ru/str/datasciencefun/1730
Part-11: https://news.1rj.ru/str/datasciencefun/1733
Part-12:
https://news.1rj.ru/str/datasciencefun/1734
Part-13: https://news.1rj.ru/str/datasciencefun/1739
Part-14: https://news.1rj.ru/str/datasciencefun/1742
Part-15: https://news.1rj.ru/str/datasciencefun/1748
Part-16: https://news.1rj.ru/str/datasciencefun/1750
Part-17: https://news.1rj.ru/str/datasciencefun/1753
Part-18: https://news.1rj.ru/str/datasciencefun/1754
Part-19: https://news.1rj.ru/str/datasciencefun/1759
Part-20: https://news.1rj.ru/str/datasciencefun/1765
Part-21: https://news.1rj.ru/str/datasciencefun/1768
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
👍22❤21🥰4👏2🤔1
Essential Topics to Master Data Science Interviews: 🚀
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some ❤️ if you're ready to elevate your data science journey! 📊
ENJOY LEARNING 👍👍
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some ❤️ if you're ready to elevate your data science journey! 📊
ENJOY LEARNING 👍👍
❤16👍8🥰1
One day or Day one. You decide.
Data Science edition.
𝗢𝗻𝗲 𝗗𝗮𝘆 : I will learn SQL.
𝗗𝗮𝘆 𝗢𝗻𝗲: Download mySQL Workbench.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will build my projects for my portfolio.
𝗗𝗮𝘆 𝗢𝗻𝗲: Look on Kaggle for a dataset to work on.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will master statistics.
𝗗𝗮𝘆 𝗢𝗻𝗲: Start the free Khan Academy Statistics and Probability course.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will learn to tell stories with data.
𝗗𝗮𝘆 𝗢𝗻𝗲: Install Tableau Public and create my first chart.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will become a Data Scientist.
𝗗𝗮𝘆 𝗢𝗻𝗲: Update my resume and apply to some Data Science job postings.
Data Science edition.
𝗢𝗻𝗲 𝗗𝗮𝘆 : I will learn SQL.
𝗗𝗮𝘆 𝗢𝗻𝗲: Download mySQL Workbench.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will build my projects for my portfolio.
𝗗𝗮𝘆 𝗢𝗻𝗲: Look on Kaggle for a dataset to work on.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will master statistics.
𝗗𝗮𝘆 𝗢𝗻𝗲: Start the free Khan Academy Statistics and Probability course.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will learn to tell stories with data.
𝗗𝗮𝘆 𝗢𝗻𝗲: Install Tableau Public and create my first chart.
𝗢𝗻𝗲 𝗗𝗮𝘆: I will become a Data Scientist.
𝗗𝗮𝘆 𝗢𝗻𝗲: Update my resume and apply to some Data Science job postings.
❤21👍11
Complete roadmap to learn data science in 2024 👇👇
1. Learn the Basics:
- Brush up on your mathematics, especially statistics.
- Familiarize yourself with programming languages like Python or R.
- Understand basic concepts in databases and data manipulation.
2. Programming Proficiency:
- Develop strong programming skills, particularly in Python or R.
- Learn data manipulation libraries (e.g., Pandas) and visualization tools (e.g., Matplotlib, Seaborn).
3. Statistics and Mathematics:
- Deepen your understanding of statistical concepts.
- Explore linear algebra and calculus, especially for machine learning.
4. Data Exploration and Preprocessing:
- Practice exploratory data analysis (EDA) techniques.
- Learn how to handle missing data and outliers.
5. Machine Learning Fundamentals:
- Understand basic machine learning algorithms (e.g., linear regression, decision trees).
- Learn how to evaluate model performance.
6. Advanced Machine Learning:
- Dive into more complex algorithms (e.g., SVM, neural networks).
- Explore ensemble methods and deep learning.
7. Big Data Technologies:
- Familiarize yourself with big data tools like Apache Hadoop and Spark.
- Learn distributed computing concepts.
8. Feature Engineering and Selection:
- Master techniques for creating and selecting relevant features in your data.
9. Model Deployment:
- Understand how to deploy machine learning models to production.
- Explore containerization and cloud services.
10. Version Control and Collaboration:
- Use version control systems like Git.
- Collaborate with others using platforms like GitHub.
11. Stay Updated:
- Keep up with the latest developments in data science and machine learning.
- Participate in online communities, read research papers, and attend conferences.
12. Build a Portfolio:
- Showcase your projects on platforms like GitHub.
- Develop a portfolio demonstrating your skills and expertise.
Best Resources to learn Data Science
Intro to Data Analytics by Udacity
Machine Learning course by Google
Machine Learning with Python
Data Science Interview Questions
Data Science Project ideas
Data Science: Linear Regression Course by Harvard
Machine Learning Interview Questions
Free Datasets for Projects
Please give us credits while sharing: -> https://news.1rj.ru/str/free4unow_backup
ENJOY LEARNING 👍👍
1. Learn the Basics:
- Brush up on your mathematics, especially statistics.
- Familiarize yourself with programming languages like Python or R.
- Understand basic concepts in databases and data manipulation.
2. Programming Proficiency:
- Develop strong programming skills, particularly in Python or R.
- Learn data manipulation libraries (e.g., Pandas) and visualization tools (e.g., Matplotlib, Seaborn).
3. Statistics and Mathematics:
- Deepen your understanding of statistical concepts.
- Explore linear algebra and calculus, especially for machine learning.
4. Data Exploration and Preprocessing:
- Practice exploratory data analysis (EDA) techniques.
- Learn how to handle missing data and outliers.
5. Machine Learning Fundamentals:
- Understand basic machine learning algorithms (e.g., linear regression, decision trees).
- Learn how to evaluate model performance.
6. Advanced Machine Learning:
- Dive into more complex algorithms (e.g., SVM, neural networks).
- Explore ensemble methods and deep learning.
7. Big Data Technologies:
- Familiarize yourself with big data tools like Apache Hadoop and Spark.
- Learn distributed computing concepts.
8. Feature Engineering and Selection:
- Master techniques for creating and selecting relevant features in your data.
9. Model Deployment:
- Understand how to deploy machine learning models to production.
- Explore containerization and cloud services.
10. Version Control and Collaboration:
- Use version control systems like Git.
- Collaborate with others using platforms like GitHub.
11. Stay Updated:
- Keep up with the latest developments in data science and machine learning.
- Participate in online communities, read research papers, and attend conferences.
12. Build a Portfolio:
- Showcase your projects on platforms like GitHub.
- Develop a portfolio demonstrating your skills and expertise.
Best Resources to learn Data Science
Intro to Data Analytics by Udacity
Machine Learning course by Google
Machine Learning with Python
Data Science Interview Questions
Data Science Project ideas
Data Science: Linear Regression Course by Harvard
Machine Learning Interview Questions
Free Datasets for Projects
Please give us credits while sharing: -> https://news.1rj.ru/str/free4unow_backup
ENJOY LEARNING 👍👍
👍19❤10🥰1