Data Science & Machine Learning – Telegram
Data Science & Machine Learning
73.3K subscribers
791 photos
2 videos
68 files
690 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Top 10 Data Science Roles with Skills & Salary details
👍31
Essential Tools and Libraries for Data Science Students

1. Programming Languages:

Python

R

SQL


2. Python Libraries:

NumPy: For numerical computations.

Pandas: For data manipulation and analysis.

Matplotlib: For basic data visualization.

Seaborn: For statistical data visualization.

Scikit-learn: For machine learning models.

TensorFlow: For deep learning.

PyTorch: For advanced neural networks.


3. R Libraries:

ggplot2: For data visualization.

dplyr: For data manipulation.

caret: For machine learning.

shiny: For building interactive web apps.


4. Data Visualization Tools:

Tableau

Power BI

Google Data Studio


5. Big Data Tools:

Apache Hadoop

Apache Spark


6. Cloud Platforms:

AWS (Amazon Web Services)

Google Cloud Platform (GCP)

Microsoft Azure


7. Statistical Software:

SAS

SPSS


8. Version Control System:

Git


9. Notebook Tools:

Jupyter Notebook

Google Colab


10. Data Sources for Practice:

Kaggle Datasets

UCI Machine Learning Repository

GitHub Repositories

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍
👍82👏1
Machine Learning Algorithms
👍54
The Data Science skill no one talks about...

Every aspiring data scientist I talk to thinks their job starts when someone else gives them:
    1. a dataset, and
    2. a clearly defined metric to optimize for, e.g. accuracy

But it doesn’t.

It starts with a business problem you need to understand, frame, and solve. This is the key data science skill that separates senior from junior professionals.

Let’s go through an example.

Example

Imagine you are a data scientist at Uber. And your product lead tells you:

    👩‍💼: “We want to decrease user churn by 5% this quarter”


We say that a user churns when she decides to stop using Uber.

But why?

There are different reasons why a user would stop using Uber. For example:

   1.  “Lyft is offering better prices for that geo” (pricing problem)
   2. “Car waiting times are too long” (supply problem)
   3. “The Android version of the app is very slow” (client-app performance problem)

You build this list ↑ by asking the right questions to the rest of the team. You need to understand the user’s experience using the app, from HER point of view.

Typically there is no single reason behind churn, but a combination of a few of these. The question is: which one should you focus on?

This is when you pull out your great data science skills and EXPLORE THE DATA 🔎.

You explore the data to understand how plausible each of the above explanations is. The output from this analysis is a single hypothesis you should consider further. Depending on the hypothesis, you will solve the data science problem differently.

For example…

Scenario 1: “Lyft Is Offering Better Prices” (Pricing Problem)

One solution would be to detect/predict the segment of users who are likely to churn (possibly using an ML Model) and send personalized discounts via push notifications. To test your solution works, you will need to run an A/B test, so you will split a percentage of Uber users into 2 groups:

    The A group. No user in this group will receive any discount.

    The B group. Users from this group that the model thinks are likely to churn, will receive a price discount in their next trip.

You could add more groups (e.g. C, D, E…) to test different pricing points.

In a nutshell

    1. Translating business problems into data science problems is the key data science skill that separates a senior from a junior data scientist.
2. Ask the right questions, list possible solutions, and explore the data to narrow down the list to one.
3. Solve this one data science problem
👍85
Let's explore some data fields today
2👍2🔥2
Machine Learning Algorithms Part-1
👍8🔥3
Top 10 Python Libraries for Data Science & Machine Learning

1. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.

2. Pandas: Pandas is a powerful data manipulation library that provides data structures like DataFrame and Series, which make it easy to work with structured data. It offers tools for data cleaning, reshaping, merging, and slicing data.

3. Matplotlib: Matplotlib is a plotting library for creating static, interactive, and animated visualizations in Python. It allows you to generate various types of plots, including line plots, bar charts, histograms, scatter plots, and more.

4. Scikit-learn: Scikit-learn is a machine learning library that provides simple and efficient tools for data mining and data analysis. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and model selection.

5. TensorFlow: TensorFlow is an open-source machine learning framework developed by Google. It enables you to build and train deep learning models using high-level APIs and tools for neural networks, natural language processing, computer vision, and more.

6. Keras: Keras is a high-level neural networks API that runs on top of TensorFlow, Theano, or Microsoft Cognitive Toolkit. It allows you to quickly prototype deep learning models with minimal code and easily experiment with different architectures.

7. Seaborn: Seaborn is a data visualization library based on Matplotlib that provides a high-level interface for creating attractive and informative statistical graphics. It simplifies the process of creating complex visualizations like heatmaps, violin plots, and pair plots.

8. Statsmodels: Statsmodels is a library that focuses on statistical modeling and hypothesis testing in Python. It offers a wide range of statistical models, including linear regression, logistic regression, time series analysis, and more.

9. XGBoost: XGBoost is an optimized gradient boosting library that provides an efficient implementation of the gradient boosting algorithm. It is widely used in machine learning competitions and has become a popular choice for building accurate predictive models.

10. NLTK (Natural Language Toolkit): NLTK is a library for natural language processing (NLP) that provides tools for text processing, tokenization, part-of-speech tagging, named entity recognition, sentiment analysis, and more. It is a valuable resource for working with textual data in data science projects.

Data Science Resources for Beginners
👇👇
https://drive.google.com/drive/folders/1uCShXgmol-fGMqeF2hf9xA5XPKVSxeTo

Share with credits: https://news.1rj.ru/str/datasciencefun

ENJOY LEARNING 👍👍
👍81
Python Cheatsheet
👍85