Data Science & Machine Learning – Telegram
Data Science & Machine Learning
73.3K subscribers
790 photos
2 videos
68 files
689 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Roadmap for Learning Machine Learning (ML)

Here’s a concise and point-wise roadmap for learning ML:

1. Prerequisites
- Learn programming basics (e.g., Python).
- Understand mathematics:
1 - Linear Algebra (vectors, matrices).
2 - Probability and Statistics (distributions, Bayes’ theorem).
3 - Calculus (derivatives, gradients).
4 - Familiarize yourself with data structures and algorithms.

2. Basics of Machine Learning
-Understand ML concepts:
Supervised, unsupervised, and reinforcement learning.
Training, validation, and testing datasets.
- Learn how to preprocess and clean data.
- Get familiar with Python libraries:
NumPy, Pandas, Matplotlib, and Seaborn.

3. Supervised Learning
- Study regression techniques:
Linear and Logistic Regression.
- Explore classification algorithms:
Decision Trees, Support Vector Machines (SVM), k-NN.
- Learn model evaluation metrics:
Accuracy, Precision, Recall, F1 Score, ROC-AUC.

4. Unsupervised Learning
- Learn clustering techniques:
k-Means, DBSCAN, Hierarchical Clustering.
- Understand Dimensionality Reduction:
PCA, t-SNE.

5. Advanced Concepts
- Explore ensemble methods:
Random Forest, Gradient Boosting, XGBoost, LightGBM.
- Learn hyperparameter tuning techniques:
Grid Search, Random Search.

6. Deep Learning (Optional for Advanced ML)
- Learn neural networks basics:
Forward and Backpropagation.
- Study Deep Learning libraries:
TensorFlow, PyTorch, Keras.
Explore CNNs, RNNs, and Transformers.

7. Hands-on Practice
- Work on small projects like:
1 - Predicting house prices.
2 - Sentiment analysis on tweets.
3 - Image classification.
4 - Explore Kaggle competitions and datasets.

8. Deployment
- Learn how to deploy ML models:
Use Flask, FastAPI, or Django.
- Explore cloud platforms: AWS, Azure, Google Cloud.

9. Keep Learning
- Stay updated with new techniques:
Follow blogs, papers, and conferences (e.g., NeurIPS, ICML).
- Dive into specialized fields:
NLP, Computer Vision, Reinforcement Learning.

Join for more: https://news.1rj.ru/str/datalemur
👍73🥰1
Machine Learning Roadmap
🔥8👍1
Project Ideas for Data Science Roles
👍103
10 commonly asked data science interview questions along with their answers

1️⃣ What is the difference between supervised and unsupervised learning?
Supervised learning involves learning from labeled data to predict outcomes while unsupervised learning involves finding patterns in unlabeled data.

2️⃣ Explain the bias-variance tradeoff in machine learning.
The bias-variance tradeoff is a key concept in machine learning. Models with high bias have low complexity and over-simplify, while models with high variance are more complex and over-fit to the training data. The goal is to find the right balance between bias and variance.

3️⃣ What is the Central Limit Theorem and why is it important in statistics?
The Central Limit Theorem (CLT) states that the sampling distribution of the sample means will be approximately normally distributed regardless of the underlying population distribution, as long as the sample size is sufficiently large. It is important because it justifies the use of statistics, such as hypothesis testing and confidence intervals, on small sample sizes.

4️⃣ Describe the process of feature selection and why it is important in machine learning.
Feature selection is the process of selecting the most relevant features (variables) from a dataset. This is important because unnecessary features can lead to over-fitting, slower training times, and reduced accuracy.

5️⃣ What is the difference between overfitting and underfitting in machine learning? How do you address them?
Overfitting occurs when a model is too complex and fits the training data too well, resulting in poor performance on unseen data. Underfitting occurs when a model is too simple and cannot fit the training data well enough, resulting in poor performance on both training and unseen data. Techniques to address overfitting include regularization and early stopping, while techniques to address underfitting include using more complex models or increasing the amount of input data.

6️⃣ What is regularization and why is it used in machine learning?
Regularization is a technique used to prevent overfitting in machine learning. It involves adding a penalty term to the loss function to limit the complexity of the model, effectively reducing the impact of certain features.

7️⃣ How do you handle missing data in a dataset?
Handling missing data can be done by either deleting the missing samples, imputing the missing values, or using models that can handle missing data directly.

8️⃣ What is the difference between classification and regression in machine learning?
Classification is a type of supervised learning where the goal is to predict a categorical or discrete outcome, while regression is a type of supervised learning where the goal is to predict a continuous or numerical outcome.

9️⃣ Explain the concept of cross-validation and why it is used.
Cross-validation is a technique used to evaluate the performance of a machine learning model. It involves spliting the data into training and validation sets, and then training and evaluating the model on multiple such splits. Cross-validation gives a better idea of the model's generalization ability and helps prevent over-fitting.

🔟 What evaluation metrics would you use to evaluate a binary classification model?
Some commonly used evaluation metrics for binary classification models are accuracy, precision, recall, F1 score, and ROC-AUC. The choice of metric depends on the specific requirements of the problem.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://news.1rj.ru/str/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊
👍96
4 Types of Data Analytics 👆
🔥52👍2
List Comprehension in Python
👍122
AI vs ML vs DL 👆👆
👍11🔥4🤔21