Data Science & Machine Learning – Telegram
Data Science & Machine Learning
73.3K subscribers
790 photos
2 videos
68 files
689 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
AI vs ML vs DL 👆👆
👍11🔥4🤔21
7 Websites to Learn Data Science for FREE🧑‍💻

w3school
datasimplifier
hackerrank
kaggle
geeksforgeeks
leetcode
freecodecamp
👍76
Use of Machine Learning in Data Analytics
4👍4
For those of you who are new to Data Science and Machine learning algorithms, let me try to give you a brief overview. ML Algorithms can be categorized into three types: supervised learning, unsupervised learning, and reinforcement learning.

1. Supervised Learning:
- Definition: Algorithms learn from labeled training data, making predictions or decisions based on input-output pairs.
- Examples: Linear regression, decision trees, support vector machines (SVM), and neural networks.
- Applications: Email spam detection, image recognition, and medical diagnosis.

2. Unsupervised Learning:
- Definition: Algorithms analyze and group unlabeled data, identifying patterns and structures without prior knowledge of the outcomes.
- Examples: K-means clustering, hierarchical clustering, and principal component analysis (PCA).
- Applications: Customer segmentation, market basket analysis, and anomaly detection.

3. Reinforcement Learning:
- Definition: Algorithms learn by interacting with an environment, receiving rewards or penalties based on their actions, and optimizing for long-term goals.
- Examples: Q-learning, deep Q-networks (DQN), and policy gradient methods.
- Applications: Robotics, game playing (like AlphaGo), and self-driving cars.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://news.1rj.ru/str/datasciencefun

Like if you need similar content

ENJOY LEARNING 👍👍
👍92
Machine Learning Algorithms Cheatsheet
👍2🔥1
Basics of Machine Learning 👇👇

Free Resources to learn Machine Learning: https://news.1rj.ru/str/free4unow_backup/587

Machine learning is a branch of artificial intelligence where computers learn from data to make decisions without explicit programming. There are three main types:

1. Supervised Learning: The algorithm is trained on a labeled dataset, learning to map input to output. For example, it can predict housing prices based on features like size and location.

2. Unsupervised Learning: The algorithm explores data patterns without explicit labels. Clustering is a common task, grouping similar data points. An example is customer segmentation for targeted marketing.

3. Reinforcement Learning: The algorithm learns by interacting with an environment. It receives feedback in the form of rewards or penalties, improving its actions over time. Gaming AI and robotic control are applications.

Key concepts include:

- Features and Labels: Features are input variables, and labels are the desired output. The model learns to map features to labels during training.

- Training and Testing: The model is trained on a subset of data and then tested on unseen data to evaluate its performance.

- Overfitting and Underfitting: Overfitting occurs when a model is too complex and fits the training data too closely, performing poorly on new data. Underfitting happens when the model is too simple and fails to capture the underlying patterns.

- Algorithms: Different algorithms suit various tasks. Common ones include linear regression for predicting numerical values, and decision trees for classification tasks.

In summary, machine learning involves training models on data to make predictions or decisions. Supervised learning uses labeled data, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns through interaction with an environment. Key considerations include features, labels, overfitting, underfitting, and choosing the right algorithm for the task.

Join @datasciencefun for more

ENJOY LEARNING 👍👍
3👍3
Which python library is not used specifically for data visualization?
Anonymous Quiz
12%
Matplotlib
14%
Seaborn
58%
Numpy
16%
Plotly
👍2
𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁 𝘃𝘀. 𝗗𝗮𝘁𝗮 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿 𝘃𝘀. 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝘃𝘀. 𝗠𝗟 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿

𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁

Think of them as data detectives.
→ 𝐅𝐨𝐜𝐮𝐬: Identifying patterns and building predictive models.
→ 𝐒𝐤𝐢𝐥𝐥𝐬: Machine learning, statistics, Python/R.
→ 𝐓𝐨𝐨𝐥𝐬: Jupyter Notebooks, TensorFlow, PyTorch.
→ 𝐆𝐨𝐚𝐥: Extract actionable insights from raw data.
𝐄𝐱𝐚𝐦𝐩𝐥𝐞: Creating a recommendation system like Netflix.

𝗗𝗮𝘁𝗮 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿

The architects of data infrastructure.
→ 𝐅𝐨𝐜𝐮𝐬: Developing data pipelines, storage systems, and infrastructure. → 𝐒𝐤𝐢𝐥𝐥𝐬: SQL, Big Data technologies (Hadoop, Spark), cloud platforms.
→ 𝐓𝐨𝐨𝐥𝐬: Airflow, Kafka, Snowflake.
→ 𝐆𝐨𝐚𝐥: Ensure seamless data flow across the organization.
𝐄𝐱𝐚𝐦𝐩𝐥𝐞: Designing a pipeline to handle millions of transactions in real-time.

𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁

Data storytellers.
→ 𝐅𝐨𝐜𝐮𝐬: Creating visualizations, dashboards, and reports.
→ 𝐒𝐤𝐢𝐥𝐥𝐬: Excel, Tableau, SQL.
→ 𝐓𝐨𝐨𝐥𝐬: Power BI, Looker, Google Sheets.
→ 𝐆𝐨𝐚𝐥: Help businesses make data-driven decisions.
𝐄𝐱𝐚𝐦𝐩𝐥𝐞: Analyzing campaign data to optimize marketing strategies.

𝗠𝗟 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿

The connectors between data science and software engineering.
→ 𝐅𝐨𝐜𝐮𝐬: Deploying machine learning models into production.
→ 𝐒𝐤𝐢𝐥𝐥𝐬: Python, APIs, cloud services (AWS, Azure).
→ 𝐓𝐨𝐨𝐥𝐬: Kubernetes, Docker, FastAPI.
→ 𝐆𝐨𝐚𝐥: Make models scalable and ready for real-world applications. 𝐄𝐱𝐚𝐦𝐩𝐥𝐞: Deploying a fraud detection model for a bank.

𝗪𝗵𝗮𝘁 𝗣𝗮𝘁𝗵 𝗦𝗵𝗼𝘂𝗹𝗱 𝗬𝗼𝘂 𝗖𝗵𝗼𝗼𝘀𝗲?

Love solving complex problems?
→ Data Scientist
Enjoy working with systems and Big Data?
→ Data Engineer
Passionate about visual storytelling?
→ Data Analyst
Excited to scale AI systems?
→ ML Engineer

Each role is crucial and in demand—choose based on your strengths and career aspirations.

What’s your ideal role?

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://news.1rj.ru/str/datasciencefun

Like if you need similar content

ENJOY LEARNING 👍👍
👍86