ML Interview Question ⬇️
➡️ Logistic Regression
The interviewer asked to explain Logistic Regression along with its:
🔷 Cost function
🔷 Assumptions
🔷 Evaluation metrics
Here is the step by step approach to answer:
☑️ Cost function: Point out how logistic regression uses log loss for classification.
☑️ Assumptions: Explain LR assumes features are independent and they have a linear link.
☑️ Evaluation metrics: Discuss accuracy, precision, and F1-score to measure performance.
Knowing every concept is important but more than that, it is important to convey our knowledge💯
➡️ Logistic Regression
The interviewer asked to explain Logistic Regression along with its:
🔷 Cost function
🔷 Assumptions
🔷 Evaluation metrics
Here is the step by step approach to answer:
☑️ Cost function: Point out how logistic regression uses log loss for classification.
☑️ Assumptions: Explain LR assumes features are independent and they have a linear link.
☑️ Evaluation metrics: Discuss accuracy, precision, and F1-score to measure performance.
Knowing every concept is important but more than that, it is important to convey our knowledge💯
👍7❤2
𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 (𝗡𝗼 𝗦𝘁𝗿𝗶𝗻𝗴𝘀 𝗔𝘁𝘁𝗮𝗰𝗵𝗲𝗱)
𝗡𝗼 𝗳𝗮𝗻𝗰𝘆 𝗰𝗼𝘂𝗿𝘀𝗲𝘀, 𝗻𝗼 𝗰𝗼𝗻𝗱𝗶𝘁𝗶𝗼𝗻𝘀, 𝗷𝘂𝘀𝘁 𝗽𝘂𝗿𝗲 𝗹𝗲𝗮𝗿𝗻𝗶𝗻𝗴.
𝗛𝗲𝗿𝗲’𝘀 𝗵𝗼𝘄 𝘁𝗼 𝗯𝗲𝗰𝗼𝗺𝗲 𝗮 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘:
1️⃣ Python Programming for Data Science → Harvard’s CS50P
The best intro to Python for absolute beginners:
↬ Covers loops, data structures, and practical exercises.
↬ Designed to help you build foundational coding skills.
Link: https://cs50.harvard.edu/python/
https://news.1rj.ru/str/datasciencefun
2️⃣ Statistics & Probability → Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
↬ Clear, beginner-friendly videos.
↬ Exercises to test your skills.
Link: https://www.khanacademy.org/math/statistics-probability
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
3️⃣ Linear Algebra for Data Science → 3Blue1Brown
↬ Learn about matrices, vectors, and transformations.
↬ Essential for machine learning models.
Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr
4️⃣ SQL Basics → Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
↬ Writing queries, joins, and filtering data.
↬ Real-world datasets to practice.
Link: https://mode.com/sql-tutorial
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
5️⃣ Data Visualization → freeCodeCamp
Learn to create stunning visualizations using Python libraries:
↬ Covers Matplotlib, Seaborn, and Plotly.
↬ Step-by-step projects included.
Link: https://www.youtube.com/watch?v=JLzTJhC2DZg
https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34
6️⃣ Machine Learning Basics → Google’s Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
↬ Learn supervised and unsupervised learning.
↬ Hands-on coding with TensorFlow.
Link: https://developers.google.com/machine-learning/crash-course
7️⃣ Deep Learning → Fast.ai’s Free Course
Fast.ai makes deep learning easy and accessible:
↬ Build neural networks with PyTorch.
↬ Learn by coding real projects.
Link: https://course.fast.ai/
8️⃣ Data Science Projects → Kaggle
↬ Compete in challenges to practice your skills.
↬ Great way to build your portfolio.
Link: https://www.kaggle.com/
𝗡𝗼 𝗳𝗮𝗻𝗰𝘆 𝗰𝗼𝘂𝗿𝘀𝗲𝘀, 𝗻𝗼 𝗰𝗼𝗻𝗱𝗶𝘁𝗶𝗼𝗻𝘀, 𝗷𝘂𝘀𝘁 𝗽𝘂𝗿𝗲 𝗹𝗲𝗮𝗿𝗻𝗶𝗻𝗴.
𝗛𝗲𝗿𝗲’𝘀 𝗵𝗼𝘄 𝘁𝗼 𝗯𝗲𝗰𝗼𝗺𝗲 𝗮 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘:
1️⃣ Python Programming for Data Science → Harvard’s CS50P
The best intro to Python for absolute beginners:
↬ Covers loops, data structures, and practical exercises.
↬ Designed to help you build foundational coding skills.
Link: https://cs50.harvard.edu/python/
https://news.1rj.ru/str/datasciencefun
2️⃣ Statistics & Probability → Khan Academy
Want to master probability, distributions, and hypothesis testing? This is where to start:
↬ Clear, beginner-friendly videos.
↬ Exercises to test your skills.
Link: https://www.khanacademy.org/math/statistics-probability
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
3️⃣ Linear Algebra for Data Science → 3Blue1Brown
↬ Learn about matrices, vectors, and transformations.
↬ Essential for machine learning models.
Link: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9KzVk3AjplI5PYPxkUr
4️⃣ SQL Basics → Mode Analytics
SQL is the backbone of data manipulation. This tutorial covers:
↬ Writing queries, joins, and filtering data.
↬ Real-world datasets to practice.
Link: https://mode.com/sql-tutorial
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
5️⃣ Data Visualization → freeCodeCamp
Learn to create stunning visualizations using Python libraries:
↬ Covers Matplotlib, Seaborn, and Plotly.
↬ Step-by-step projects included.
Link: https://www.youtube.com/watch?v=JLzTJhC2DZg
https://whatsapp.com/channel/0029VaxaFzoEQIaujB31SO34
6️⃣ Machine Learning Basics → Google’s Machine Learning Crash Course
An in-depth introduction to machine learning for beginners:
↬ Learn supervised and unsupervised learning.
↬ Hands-on coding with TensorFlow.
Link: https://developers.google.com/machine-learning/crash-course
7️⃣ Deep Learning → Fast.ai’s Free Course
Fast.ai makes deep learning easy and accessible:
↬ Build neural networks with PyTorch.
↬ Learn by coding real projects.
Link: https://course.fast.ai/
8️⃣ Data Science Projects → Kaggle
↬ Compete in challenges to practice your skills.
↬ Great way to build your portfolio.
Link: https://www.kaggle.com/
👍7❤4
𝐒𝐢𝐦𝐩𝐥𝐞 𝐆𝐮𝐢𝐝𝐞 𝐭𝐨 𝐋𝐞𝐚𝐫𝐧 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐟𝐨𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬 😃
🙄 𝐖𝐡𝐚𝐭 𝐢𝐬 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠?
Imagine you're teaching a child to recognize fruits. You show them an apple, tell them it’s an apple, and next time they know it. That’s what Machine Learning does! But instead of a child, it’s a computer, and instead of fruits, it learns from data.
Machine Learning is about teaching computers to learn from past data so they can make smart decisions or predictions on their own, improving over time without needing new instructions.
🤔 𝐖𝐡𝐲 𝐢𝐬 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐈𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐭 𝐟𝐨𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬?
Machine Learning makes data analytics super powerful. Instead of just looking at past data, it can help predict future trends, find patterns we didn’t notice, and make decisions that help businesses grow!
😮 𝐇𝐨𝐰 𝐭𝐨 𝐋𝐞𝐚𝐫𝐧 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐟𝐨𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬?
✅ 𝐋𝐞𝐚𝐫𝐧 𝐏𝐲𝐭𝐡𝐨𝐧: Python is the most commonly used language in ML. Start by getting comfortable with basic Python, then move on to ML-specific libraries like:
𝐩𝐚𝐧𝐝𝐚𝐬: For data manipulation.
𝐍𝐮𝐦𝐏𝐲: For numerical calculations.
𝐬𝐜𝐢𝐤𝐢𝐭-𝐥𝐞𝐚𝐫𝐧: For implementing basic ML algorithms.
✅ 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝 𝐭𝐡𝐞 𝐁𝐚𝐬𝐢𝐜𝐬 𝐨𝐟 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬: ML relies heavily on concepts like probability, distributions, and hypothesis testing. Understanding basic statistics will help you grasp how models work.
✅ 𝐏𝐫𝐚𝐜𝐭𝐢𝐜𝐞 𝐨𝐧 𝐑𝐞𝐚𝐥 𝐃𝐚𝐭𝐚𝐬𝐞𝐭𝐬: Platforms like Kaggle offer datasets and ML competitions. Start by analyzing small datasets to understand how machine learning models make predictions.
✅ 𝐋𝐞𝐚𝐫𝐧 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧: Use tools like Matplotlib or Seaborn to visualize data. This will help you understand patterns in the data and how machine learning models interpret them.
✅ 𝐖𝐨𝐫𝐤 𝐨𝐧 𝐒𝐢𝐦𝐩𝐥𝐞 𝐏𝐫𝐨𝐣𝐞𝐜𝐭𝐬: Start with basic ML projects such as:
-Predicting house prices.
-Classifying emails as spam or not spam.
-Clustering customers based on their purchasing habits.
Data Science Resources
👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Like if you need similar content 😄👍
🙄 𝐖𝐡𝐚𝐭 𝐢𝐬 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠?
Imagine you're teaching a child to recognize fruits. You show them an apple, tell them it’s an apple, and next time they know it. That’s what Machine Learning does! But instead of a child, it’s a computer, and instead of fruits, it learns from data.
Machine Learning is about teaching computers to learn from past data so they can make smart decisions or predictions on their own, improving over time without needing new instructions.
🤔 𝐖𝐡𝐲 𝐢𝐬 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐈𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐭 𝐟𝐨𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬?
Machine Learning makes data analytics super powerful. Instead of just looking at past data, it can help predict future trends, find patterns we didn’t notice, and make decisions that help businesses grow!
😮 𝐇𝐨𝐰 𝐭𝐨 𝐋𝐞𝐚𝐫𝐧 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐟𝐨𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬?
✅ 𝐋𝐞𝐚𝐫𝐧 𝐏𝐲𝐭𝐡𝐨𝐧: Python is the most commonly used language in ML. Start by getting comfortable with basic Python, then move on to ML-specific libraries like:
𝐩𝐚𝐧𝐝𝐚𝐬: For data manipulation.
𝐍𝐮𝐦𝐏𝐲: For numerical calculations.
𝐬𝐜𝐢𝐤𝐢𝐭-𝐥𝐞𝐚𝐫𝐧: For implementing basic ML algorithms.
✅ 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝 𝐭𝐡𝐞 𝐁𝐚𝐬𝐢𝐜𝐬 𝐨𝐟 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬: ML relies heavily on concepts like probability, distributions, and hypothesis testing. Understanding basic statistics will help you grasp how models work.
✅ 𝐏𝐫𝐚𝐜𝐭𝐢𝐜𝐞 𝐨𝐧 𝐑𝐞𝐚𝐥 𝐃𝐚𝐭𝐚𝐬𝐞𝐭𝐬: Platforms like Kaggle offer datasets and ML competitions. Start by analyzing small datasets to understand how machine learning models make predictions.
✅ 𝐋𝐞𝐚𝐫𝐧 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧: Use tools like Matplotlib or Seaborn to visualize data. This will help you understand patterns in the data and how machine learning models interpret them.
✅ 𝐖𝐨𝐫𝐤 𝐨𝐧 𝐒𝐢𝐦𝐩𝐥𝐞 𝐏𝐫𝐨𝐣𝐞𝐜𝐭𝐬: Start with basic ML projects such as:
-Predicting house prices.
-Classifying emails as spam or not spam.
-Clustering customers based on their purchasing habits.
Data Science Resources
👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Like if you need similar content 😄👍
👍7❤1
Three different learning styles in machine learning algorithms:
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
👍6
Key Concepts for Data Science Interviews
1. Data Cleaning and Preprocessing: Master techniques for cleaning, transforming, and preparing data for analysis, including handling missing data, outlier detection, data normalization, and feature engineering.
2. Statistics and Probability: Have a solid understanding of denoscriptive and inferential statistics, including distributions, hypothesis testing, p-values, confidence intervals, and Bayesian probability.
3. Linear Algebra and Calculus: Understand the mathematical foundations of data science, including matrix operations, eigenvalues, derivatives, and gradients, which are essential for algorithms like PCA and gradient descent.
4. Machine Learning Algorithms: Know the fundamentals of machine learning, including supervised and unsupervised learning. Be familiar with key algorithms like linear regression, logistic regression, decision trees, random forests, SVMs, and k-means clustering.
5. Model Evaluation and Validation: Learn how to evaluate model performance using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, and confusion matrices. Understand techniques like cross-validation and overfitting prevention.
6. Feature Engineering: Develop the ability to create meaningful features from raw data that improve model performance. This includes encoding categorical variables, scaling features, and creating interaction terms.
7. Deep Learning: Understand the basics of neural networks and deep learning. Familiarize yourself with architectures like CNNs, RNNs, and frameworks like TensorFlow and PyTorch.
8. Natural Language Processing (NLP): Learn key NLP techniques such as tokenization, stemming, lemmatization, and sentiment analysis. Understand the use of models like BERT, Word2Vec, and LSTM for text data.
9. Big Data Technologies: Gain knowledge of big data frameworks and tools like Hadoop, Spark, and NoSQL databases that are used to process large datasets efficiently.
10. Data Visualization and Storytelling: Develop the ability to create compelling visualizations using tools like Matplotlib, Seaborn, or Tableau. Practice conveying your data findings clearly to both technical and non-technical audiences through visual storytelling.
11. Python and R: Be proficient in Python and R for data manipulation, analysis, and model building. Familiarity with libraries like Pandas, NumPy, Scikit-learn, and tidyverse is essential.
12. Domain Knowledge: Develop a deep understanding of the specific industry or domain you're working in, as this context helps you make more informed decisions during the data analysis and modeling process.
Like if you need similar content 😄👍
1. Data Cleaning and Preprocessing: Master techniques for cleaning, transforming, and preparing data for analysis, including handling missing data, outlier detection, data normalization, and feature engineering.
2. Statistics and Probability: Have a solid understanding of denoscriptive and inferential statistics, including distributions, hypothesis testing, p-values, confidence intervals, and Bayesian probability.
3. Linear Algebra and Calculus: Understand the mathematical foundations of data science, including matrix operations, eigenvalues, derivatives, and gradients, which are essential for algorithms like PCA and gradient descent.
4. Machine Learning Algorithms: Know the fundamentals of machine learning, including supervised and unsupervised learning. Be familiar with key algorithms like linear regression, logistic regression, decision trees, random forests, SVMs, and k-means clustering.
5. Model Evaluation and Validation: Learn how to evaluate model performance using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, and confusion matrices. Understand techniques like cross-validation and overfitting prevention.
6. Feature Engineering: Develop the ability to create meaningful features from raw data that improve model performance. This includes encoding categorical variables, scaling features, and creating interaction terms.
7. Deep Learning: Understand the basics of neural networks and deep learning. Familiarize yourself with architectures like CNNs, RNNs, and frameworks like TensorFlow and PyTorch.
8. Natural Language Processing (NLP): Learn key NLP techniques such as tokenization, stemming, lemmatization, and sentiment analysis. Understand the use of models like BERT, Word2Vec, and LSTM for text data.
9. Big Data Technologies: Gain knowledge of big data frameworks and tools like Hadoop, Spark, and NoSQL databases that are used to process large datasets efficiently.
10. Data Visualization and Storytelling: Develop the ability to create compelling visualizations using tools like Matplotlib, Seaborn, or Tableau. Practice conveying your data findings clearly to both technical and non-technical audiences through visual storytelling.
11. Python and R: Be proficient in Python and R for data manipulation, analysis, and model building. Familiarity with libraries like Pandas, NumPy, Scikit-learn, and tidyverse is essential.
12. Domain Knowledge: Develop a deep understanding of the specific industry or domain you're working in, as this context helps you make more informed decisions during the data analysis and modeling process.
Like if you need similar content 😄👍
👍13❤1
Top 10 machine Learning algorithms for beginners 👇👇
1. Linear Regression: A simple algorithm used for predicting a continuous value based on one or more input features.
2. Logistic Regression: Used for binary classification problems, where the output is a binary value (0 or 1).
3. Decision Trees: A versatile algorithm that can be used for both classification and regression tasks, based on a tree-like structure of decisions.
4. Random Forest: An ensemble learning method that combines multiple decision trees to improve the accuracy and robustness of the model.
5. Support Vector Machines (SVM): Used for both classification and regression tasks, with the goal of finding the hyperplane that best separates the classes.
6. K-Nearest Neighbors (KNN): A simple algorithm that classifies a new data point based on the majority class of its k nearest neighbors in the feature space.
7. Naive Bayes: A probabilistic algorithm based on Bayes' theorem that is commonly used for text classification and spam filtering.
8. K-Means Clustering: An unsupervised learning algorithm used for clustering data points into k distinct groups based on similarity.
9. Principal Component Analysis (PCA): A dimensionality reduction technique used to reduce the number of features in a dataset while preserving the most important information.
10. Gradient Boosting Machines (GBM): An ensemble learning method that builds a series of weak learners to create a strong predictive model through iterative optimization.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
1. Linear Regression: A simple algorithm used for predicting a continuous value based on one or more input features.
2. Logistic Regression: Used for binary classification problems, where the output is a binary value (0 or 1).
3. Decision Trees: A versatile algorithm that can be used for both classification and regression tasks, based on a tree-like structure of decisions.
4. Random Forest: An ensemble learning method that combines multiple decision trees to improve the accuracy and robustness of the model.
5. Support Vector Machines (SVM): Used for both classification and regression tasks, with the goal of finding the hyperplane that best separates the classes.
6. K-Nearest Neighbors (KNN): A simple algorithm that classifies a new data point based on the majority class of its k nearest neighbors in the feature space.
7. Naive Bayes: A probabilistic algorithm based on Bayes' theorem that is commonly used for text classification and spam filtering.
8. K-Means Clustering: An unsupervised learning algorithm used for clustering data points into k distinct groups based on similarity.
9. Principal Component Analysis (PCA): A dimensionality reduction technique used to reduce the number of features in a dataset while preserving the most important information.
10. Gradient Boosting Machines (GBM): An ensemble learning method that builds a series of weak learners to create a strong predictive model through iterative optimization.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
👍11
Some useful PYTHON libraries for data science
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook –pylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Python’s usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of denoscriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook –pylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Python’s usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of denoscriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
👍10❤2
Accenture Data Scientist Interview Questions!
1st round-
Technical Round
- 2 SQl questions based on playing around views and table, which could be solved by both subqueries and window functions.
- 2 Pandas questions , testing your knowledge on filtering , concatenation , joins and merge.
- 3-4 Machine Learning questions completely based on my Projects, starting from
Explaining the problem statements and then discussing the roadblocks of those projects and some cross questions.
2nd round-
- Couple of python questions agains on pandas and numpy and some hypothetical data.
- Machine Learning projects explanations and cross questions.
- Case Study and a quiz question.
3rd and Final round.
HR interview
Simple Scenerio Based Questions.
Like if you need similar content 😄👍
1st round-
Technical Round
- 2 SQl questions based on playing around views and table, which could be solved by both subqueries and window functions.
- 2 Pandas questions , testing your knowledge on filtering , concatenation , joins and merge.
- 3-4 Machine Learning questions completely based on my Projects, starting from
Explaining the problem statements and then discussing the roadblocks of those projects and some cross questions.
2nd round-
- Couple of python questions agains on pandas and numpy and some hypothetical data.
- Machine Learning projects explanations and cross questions.
- Case Study and a quiz question.
3rd and Final round.
HR interview
Simple Scenerio Based Questions.
Like if you need similar content 😄👍
👍6
Key Concepts for Machine Learning Interviews
1. Supervised Learning: Understand the basics of supervised learning, where models are trained on labeled data. Key algorithms include Linear Regression, Logistic Regression, Support Vector Machines (SVMs), k-Nearest Neighbors (k-NN), Decision Trees, and Random Forests.
2. Unsupervised Learning: Learn unsupervised learning techniques that work with unlabeled data. Familiarize yourself with algorithms like k-Means Clustering, Hierarchical Clustering, Principal Component Analysis (PCA), and t-SNE.
3. Model Evaluation Metrics: Know how to evaluate models using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, mean squared error (MSE), and R-squared. Understand when to use each metric based on the problem at hand.
4. Overfitting and Underfitting: Grasp the concepts of overfitting and underfitting, and know how to address them through techniques like cross-validation, regularization (L1, L2), and pruning in decision trees.
5. Feature Engineering: Master the art of creating new features from raw data to improve model performance. Techniques include one-hot encoding, feature scaling, polynomial features, and feature selection methods like Recursive Feature Elimination (RFE).
6. Hyperparameter Tuning: Learn how to optimize model performance by tuning hyperparameters using techniques like Grid Search, Random Search, and Bayesian Optimization.
7. Ensemble Methods: Understand ensemble learning techniques that combine multiple models to improve accuracy. Key methods include Bagging (e.g., Random Forests), Boosting (e.g., AdaBoost, XGBoost, Gradient Boosting), and Stacking.
8. Neural Networks and Deep Learning: Get familiar with the basics of neural networks, including activation functions, backpropagation, and gradient descent. Learn about deep learning architectures like Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data.
9. Natural Language Processing (NLP): Understand key NLP techniques such as tokenization, stemming, and lemmatization, as well as advanced topics like word embeddings (e.g., Word2Vec, GloVe), transformers (e.g., BERT, GPT), and sentiment analysis.
10. Dimensionality Reduction: Learn how to reduce the number of features in a dataset while preserving as much information as possible. Techniques include PCA, Singular Value Decomposition (SVD), and Feature Importance methods.
11. Reinforcement Learning: Gain a basic understanding of reinforcement learning, where agents learn to make decisions by receiving rewards or penalties. Familiarize yourself with concepts like Markov Decision Processes (MDPs), Q-learning, and policy gradients.
12. Big Data and Scalable Machine Learning: Learn how to handle large datasets and scale machine learning algorithms using tools like Apache Spark, Hadoop, and distributed frameworks for training models on big data.
13. Model Deployment and Monitoring: Understand how to deploy machine learning models into production environments and monitor their performance over time. Familiarize yourself with tools and platforms like TensorFlow Serving, AWS SageMaker, Docker, and Flask for model deployment.
14. Ethics in Machine Learning: Be aware of the ethical implications of machine learning, including issues related to bias, fairness, transparency, and accountability. Understand the importance of creating models that are not only accurate but also ethically sound.
15. Bayesian Inference: Learn about Bayesian methods in machine learning, which involve updating the probability of a hypothesis as more evidence becomes available. Key concepts include Bayes’ theorem, prior and posterior distributions, and Bayesian networks.
1. Supervised Learning: Understand the basics of supervised learning, where models are trained on labeled data. Key algorithms include Linear Regression, Logistic Regression, Support Vector Machines (SVMs), k-Nearest Neighbors (k-NN), Decision Trees, and Random Forests.
2. Unsupervised Learning: Learn unsupervised learning techniques that work with unlabeled data. Familiarize yourself with algorithms like k-Means Clustering, Hierarchical Clustering, Principal Component Analysis (PCA), and t-SNE.
3. Model Evaluation Metrics: Know how to evaluate models using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, mean squared error (MSE), and R-squared. Understand when to use each metric based on the problem at hand.
4. Overfitting and Underfitting: Grasp the concepts of overfitting and underfitting, and know how to address them through techniques like cross-validation, regularization (L1, L2), and pruning in decision trees.
5. Feature Engineering: Master the art of creating new features from raw data to improve model performance. Techniques include one-hot encoding, feature scaling, polynomial features, and feature selection methods like Recursive Feature Elimination (RFE).
6. Hyperparameter Tuning: Learn how to optimize model performance by tuning hyperparameters using techniques like Grid Search, Random Search, and Bayesian Optimization.
7. Ensemble Methods: Understand ensemble learning techniques that combine multiple models to improve accuracy. Key methods include Bagging (e.g., Random Forests), Boosting (e.g., AdaBoost, XGBoost, Gradient Boosting), and Stacking.
8. Neural Networks and Deep Learning: Get familiar with the basics of neural networks, including activation functions, backpropagation, and gradient descent. Learn about deep learning architectures like Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data.
9. Natural Language Processing (NLP): Understand key NLP techniques such as tokenization, stemming, and lemmatization, as well as advanced topics like word embeddings (e.g., Word2Vec, GloVe), transformers (e.g., BERT, GPT), and sentiment analysis.
10. Dimensionality Reduction: Learn how to reduce the number of features in a dataset while preserving as much information as possible. Techniques include PCA, Singular Value Decomposition (SVD), and Feature Importance methods.
11. Reinforcement Learning: Gain a basic understanding of reinforcement learning, where agents learn to make decisions by receiving rewards or penalties. Familiarize yourself with concepts like Markov Decision Processes (MDPs), Q-learning, and policy gradients.
12. Big Data and Scalable Machine Learning: Learn how to handle large datasets and scale machine learning algorithms using tools like Apache Spark, Hadoop, and distributed frameworks for training models on big data.
13. Model Deployment and Monitoring: Understand how to deploy machine learning models into production environments and monitor their performance over time. Familiarize yourself with tools and platforms like TensorFlow Serving, AWS SageMaker, Docker, and Flask for model deployment.
14. Ethics in Machine Learning: Be aware of the ethical implications of machine learning, including issues related to bias, fairness, transparency, and accountability. Understand the importance of creating models that are not only accurate but also ethically sound.
15. Bayesian Inference: Learn about Bayesian methods in machine learning, which involve updating the probability of a hypothesis as more evidence becomes available. Key concepts include Bayes’ theorem, prior and posterior distributions, and Bayesian networks.
👍8
🚀 Top 10 Tools Data Scientists Love! 🧠
In the ever-evolving world of data science, staying updated with the right tools is crucial to solving complex problems and deriving meaningful insights.
🔍 Here’s a quick breakdown of the most popular tools:
1. Python 🐍: The go-to language for data science, favored for its versatility and powerful libraries.
2. SQL 🛠️: Essential for querying databases and manipulating data.
3. Jupyter Notebooks 📓: An interactive environment that makes data analysis and visualization a breeze.
4. TensorFlow/PyTorch 🤖: Leading frameworks for deep learning and neural networks.
5. Tableau 📊: A user-friendly tool for creating stunning visualizations and dashboards.
6. Git & GitHub 💻: Version control systems that every data scientist should master.
7. Hadoop & Spark 🔥: Big data frameworks that help process massive datasets efficiently.
8. Scikit-learn 🧬: A powerful library for machine learning in Python.
9. R 📈: A statistical programming language that is still a favorite among many analysts.
10. Docker 🐋: A must-have for containerization and deploying applications.
Like if you need similar content 😄👍
In the ever-evolving world of data science, staying updated with the right tools is crucial to solving complex problems and deriving meaningful insights.
🔍 Here’s a quick breakdown of the most popular tools:
1. Python 🐍: The go-to language for data science, favored for its versatility and powerful libraries.
2. SQL 🛠️: Essential for querying databases and manipulating data.
3. Jupyter Notebooks 📓: An interactive environment that makes data analysis and visualization a breeze.
4. TensorFlow/PyTorch 🤖: Leading frameworks for deep learning and neural networks.
5. Tableau 📊: A user-friendly tool for creating stunning visualizations and dashboards.
6. Git & GitHub 💻: Version control systems that every data scientist should master.
7. Hadoop & Spark 🔥: Big data frameworks that help process massive datasets efficiently.
8. Scikit-learn 🧬: A powerful library for machine learning in Python.
9. R 📈: A statistical programming language that is still a favorite among many analysts.
10. Docker 🐋: A must-have for containerization and deploying applications.
Like if you need similar content 😄👍
👍9❤3
Important Topics to become a data scientist
[Advanced Level]
👇👇
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Denoscription
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
[Advanced Level]
👇👇
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Denoscription
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
❤6👍2
Top 5 Case Studies for Data Analytics: You Must Know Before Attending an Interview
1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.
2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.
3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.
4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.
5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.
Like if it helps 😄
1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.
2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.
3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.
4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.
5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.
Like if it helps 😄
👍12