Data Science & Machine Learning – Telegram
Data Science & Machine Learning
73.2K subscribers
792 photos
2 videos
68 files
691 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Data Science Cheatsheet 💪
5👍2🔥1
A-Z of essential data science concepts

A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.

Data Science Interview Resources
👇👇
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like for more 😄
👍4
What 𝗠𝗟 𝗰𝗼𝗻𝗰𝗲𝗽𝘁𝘀 are commonly asked in 𝗱𝗮𝘁𝗮 𝘀𝗰𝗶𝗲𝗻𝗰𝗲 𝗶𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀?

These are fair game in interviews at 𝘀𝘁𝗮𝗿𝘁𝘂𝗽𝘀, 𝗰𝗼𝗻𝘀𝘂𝗹𝘁𝗶𝗻𝗴 & 𝗹𝗮𝗿𝗴𝗲 𝘁𝗲𝗰𝗵.

𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
- Supervised vs. Unsupervised Learning
- Overfitting and Underfitting
- Cross-validation
- Bias-Variance Tradeoff
- Accuracy vs Interpretability
- Accuracy vs Latency

𝗠𝗟 𝗔𝗹𝗴𝗼𝗿𝗶𝘁𝗵𝗺𝘀
- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines
- K-Nearest Neighbors
- Naive Bayes
- Linear Regression
- Ridge and Lasso Regression
- K-Means Clustering
- Hierarchical Clustering
- PCA

𝗠𝗼𝗱𝗲𝗹𝗶𝗻𝗴 𝗦𝘁𝗲𝗽𝘀
- EDA
- Data Cleaning (e.g. missing value imputation)
- Data Preprocessing (e.g. scaling)
- Feature Engineering (e.g. aggregation)
- Feature Selection (e.g. variable importance)
- Model Training (e.g. gradient descent)
- Model Evaluation (e.g. AUC vs Accuracy)
- Model Productionization

𝗛𝘆𝗽𝗲𝗿𝗽𝗮𝗿𝗮𝗺𝗲𝘁𝗲𝗿 𝗧𝘂𝗻𝗶𝗻𝗴
- Grid Search
- Random Search
- Bayesian Optimization

𝗠𝗟 𝗖𝗮𝘀𝗲𝘀
- [Capital One] Detect credit card fraudsters
- [Amazon] Forecast monthly sales
- [Airbnb] Estimate lifetime value of a guest

I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍
👍2
Key Concepts for Machine Learning Interviews

1. Supervised Learning: Understand the basics of supervised learning, where models are trained on labeled data. Key algorithms include Linear Regression, Logistic Regression, Support Vector Machines (SVMs), k-Nearest Neighbors (k-NN), Decision Trees, and Random Forests.

2. Unsupervised Learning: Learn unsupervised learning techniques that work with unlabeled data. Familiarize yourself with algorithms like k-Means Clustering, Hierarchical Clustering, Principal Component Analysis (PCA), and t-SNE.

3. Model Evaluation Metrics: Know how to evaluate models using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, mean squared error (MSE), and R-squared. Understand when to use each metric based on the problem at hand.

4. Overfitting and Underfitting: Grasp the concepts of overfitting and underfitting, and know how to address them through techniques like cross-validation, regularization (L1, L2), and pruning in decision trees.

5. Feature Engineering: Master the art of creating new features from raw data to improve model performance. Techniques include one-hot encoding, feature scaling, polynomial features, and feature selection methods like Recursive Feature Elimination (RFE).

6. Hyperparameter Tuning: Learn how to optimize model performance by tuning hyperparameters using techniques like Grid Search, Random Search, and Bayesian Optimization.

7. Ensemble Methods: Understand ensemble learning techniques that combine multiple models to improve accuracy. Key methods include Bagging (e.g., Random Forests), Boosting (e.g., AdaBoost, XGBoost, Gradient Boosting), and Stacking.

8. Neural Networks and Deep Learning: Get familiar with the basics of neural networks, including activation functions, backpropagation, and gradient descent. Learn about deep learning architectures like Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data.

9. Natural Language Processing (NLP): Understand key NLP techniques such as tokenization, stemming, and lemmatization, as well as advanced topics like word embeddings (e.g., Word2Vec, GloVe), transformers (e.g., BERT, GPT), and sentiment analysis.

10. Dimensionality Reduction: Learn how to reduce the number of features in a dataset while preserving as much information as possible. Techniques include PCA, Singular Value Decomposition (SVD), and Feature Importance methods.

11. Reinforcement Learning: Gain a basic understanding of reinforcement learning, where agents learn to make decisions by receiving rewards or penalties. Familiarize yourself with concepts like Markov Decision Processes (MDPs), Q-learning, and policy gradients.

12. Big Data and Scalable Machine Learning: Learn how to handle large datasets and scale machine learning algorithms using tools like Apache Spark, Hadoop, and distributed frameworks for training models on big data.

13. Model Deployment and Monitoring: Understand how to deploy machine learning models into production environments and monitor their performance over time. Familiarize yourself with tools and platforms like TensorFlow Serving, AWS SageMaker, Docker, and Flask for model deployment.

14. Ethics in Machine Learning: Be aware of the ethical implications of machine learning, including issues related to bias, fairness, transparency, and accountability. Understand the importance of creating models that are not only accurate but also ethically sound.

15. Bayesian Inference: Learn about Bayesian methods in machine learning, which involve updating the probability of a hypothesis as more evidence becomes available. Key concepts include Bayes’ theorem, prior and posterior distributions, and Bayesian networks.

I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍
👍5🥰4
Prompt Engineer vs Data Scientist 😅
😁6👍4
Can AI replace data scientist?

AI can automate many tasks that data scientists perform, but it is unlikely to completely replace them in the foreseeable future. Rather than replacing data scientists, AI will enhance their capabilities by automating repetitive tasks, allowing them to focus on higher-level strategy, decision-making, and ethical considerations.

What AI Can Automate in Data Science:

Data Cleaning & Preparation – AI can automate data wrangling tasks like handling missing values and detecting anomalies.

Feature Engineering – AI-driven tools can generate and select features automatically.

Model Selection & Hyperparameter Tuning – Automated Machine Learning (AutoML) can choose models, tune hyperparameters, and even optimize architectures.

Basic Data Visualization & Reporting – AI tools can generate dashboards and insights automatically.

What AI Cannot Replace:

Problem-Solving & Business Understanding – AI cannot define business problems, formulate hypotheses, or align analysis with strategic goals.

Interpretability & Decision-Making – AI-generated models can be complex, but a human expert is needed to interpret results and make decisions.

Innovation – AI lacks the ability identify new opportunities, or design novel experiments.

Ethical Considerations & Bias Handling – AI can introduce biases, and data scientists are needed to ensure fairness and ethical use.
👍82
If you want to get a job as a machine learning engineer, don’t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.

Yes, you might hear a lot about them or some other trending technology of the year...but guess what!

Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.

Instead, here are basic skills that will get you further than mastering any framework:


𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.

You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability

𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.

𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.

You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.

𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.

𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.

You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai

I love frameworks and libraries, and they can make anyone's job easier.

But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best 👍👍
👍5
Learn Data Science in 2024

𝟭. 𝗔𝗽𝗽𝗹𝘆 𝗣𝗮𝗿𝗲𝘁𝗼'𝘀 𝗟𝗮𝘄 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗝𝘂𝘀𝘁 𝗘𝗻𝗼𝘂𝗴𝗵 📚

Pareto's Law states that "that 80% of consequences come from 20% of the causes".

This law should serve as a guiding framework for the volume of content you need to know to be proficient in data science.

Often rookies make the mistake of overspending their time learning algorithms that are rarely applied in production. Learning about advanced algorithms such as XLNet, Bayesian SVD++, and BiLSTMs, are cool to learn.

But, in reality, you will rarely apply such algorithms in production (unless your job demands research and application of state-of-the-art algos).

For most ML applications in production - especially in the MVP phase, simple algos like logistic regression, K-Means, random forest, and XGBoost provide the biggest bang for the buck because of their simplicity in training, interpretation and productionization.

So, invest more time learning topics that provide immediate value now, not a year later.

𝟮. 𝗙𝗶𝗻𝗱 𝗮 𝗠𝗲𝗻𝘁𝗼𝗿

There’s a Japanese proverb that says “Better than a thousand days of diligent study is one day with a great teacher.” This proverb directly applies to learning data science quickly.

Mentors can teach you about how to build a model in production and how to manage stakeholders - stuff that you don’t often read about in courses and books.

So, find a mentor who can teach you practical knowledge in data science.

𝟯. 𝗗𝗲𝗹𝗶𝗯𝗲𝗿𝗮𝘁𝗲 𝗣𝗿𝗮𝗰𝘁𝗶𝗰𝗲 ✍️

If you are serious about growing your excelling in data science, you have to put in the time to nurture your knowledge. This means that you need to spend less time watching mindless videos on TikTok and spend more time reading books and watching video lectures.

Join @datasciencefree for more

ENJOY LEARNING 👍👍
👍74
Many people pay too much to learn Data Science, but my mission is to break down barriers. I have shared complete learning series to learn Data Science algorithms from scratch.

Here are the links to the Data Science series 👇👇

Complete Data Science Algorithms: https://news.1rj.ru/str/datasciencefun/1708

Part-1: https://news.1rj.ru/str/datasciencefun/1710

Part-2: https://news.1rj.ru/str/datasciencefun/1716

Part-3: https://news.1rj.ru/str/datasciencefun/1718

Part-4: https://news.1rj.ru/str/datasciencefun/1719

Part-5: https://news.1rj.ru/str/datasciencefun/1723

Part-6: https://news.1rj.ru/str/datasciencefun/1724

Part-7: https://news.1rj.ru/str/datasciencefun/1725

Part-8: https://news.1rj.ru/str/datasciencefun/1726

Part-9: https://news.1rj.ru/str/datasciencefun/1729

Part-10: https://news.1rj.ru/str/datasciencefun/1730

Part-11: https://news.1rj.ru/str/datasciencefun/1733

Part-12:
https://news.1rj.ru/str/datasciencefun/1734

Part-13: https://news.1rj.ru/str/datasciencefun/1739

Part-14: https://news.1rj.ru/str/datasciencefun/1742

Part-15: https://news.1rj.ru/str/datasciencefun/1748

Part-16: https://news.1rj.ru/str/datasciencefun/1750

Part-17: https://news.1rj.ru/str/datasciencefun/1753

Part-18: https://news.1rj.ru/str/datasciencefun/1754

Part-19: https://news.1rj.ru/str/datasciencefun/1759

Part-20: https://news.1rj.ru/str/datasciencefun/1765

Part-21: https://news.1rj.ru/str/datasciencefun/1768

I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.

But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.

Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.

Hope it helps :)
👍15🔥21👏1
Data Science Roadmap: 🗺

📂 Math & Stats
 ∟📂 Python/R
  ∟📂 Data Wrangling
   ∟📂 Visualization
    ∟📂 ML
     ∟📂 DL & NLP
      ∟📂 Projects
       ∟ Apply For Job

Like if you need detailed explanation step-by-step ❤️
21👍12
Python Detailed Roadmap 🚀

📌 1. Basics
Data Types & Variables
Operators & Expressions
Control Flow (if, loops)

📌 2. Functions & Modules
Defining Functions
Lambda Functions
Importing & Creating Modules

📌 3. File Handling
Reading & Writing Files
Working with CSV & JSON

📌 4. Object-Oriented Programming (OOP)
Classes & Objects
Inheritance & Polymorphism
Encapsulation

📌 5. Exception Handling
Try-Except Blocks
Custom Exceptions

📌 6. Advanced Python Concepts
List & Dictionary Comprehensions
Generators & Iterators
Decorators

📌 7. Essential Libraries
NumPy (Arrays & Computations)
Pandas (Data Analysis)
Matplotlib & Seaborn (Visualization)

📌 8. Web Development & APIs
Web Scraping (BeautifulSoup, Scrapy)
API Integration (Requests)
Flask & Django (Backend Development)

📌 9. Automation & Scripting
Automating Tasks with Python
Working with Selenium & PyAutoGUI

📌 10. Data Science & Machine Learning
Data Cleaning & Preprocessing
Scikit-Learn (ML Algorithms)
TensorFlow & PyTorch (Deep Learning)

📌 11. Projects
Build Real-World Applications
Showcase on GitHub

📌 12. Apply for Jobs
Strengthen Resume & Portfolio
Prepare for Technical Interviews

Like for more ❤️💪
👍75
Advanced AI and Data Science Interview Questions

1. Explain the concept of Generative Adversarial Networks (GANs). How do they work, and what are some of their applications?

2. What is the Curse of Dimensionality? How does it affect machine learning models, and what techniques can be used to mitigate its impact?

3. Describe the process of hyperparameter tuning in deep learning. What are some strategies you can use to optimize hyperparameters?

4. How does a Transformer architecture differ from traditional RNNs and LSTMs? Why has it become so popular in natural language processing (NLP)?

5. What is the difference between L1 and L2 regularization, and in what scenarios would you prefer one over the other?

6. Explain the concept of transfer learning. How can pre-trained models be used in a new but related task?

7. Discuss the importance of explainability in AI models. How do methods like LIME or SHAP contribute to model interpretability?

8. What are the differences between Reinforcement Learning (RL) and Supervised Learning? Can you provide an example where RL would be more appropriate?

9. How do you handle imbalanced datasets in a classification problem? Discuss techniques like SMOTE, ADASYN, or cost-sensitive learning.

10. What is Bayesian Optimization, and how does it compare to grid search or random search for hyperparameter tuning?

11. Describe the steps involved in developing a recommendation system. What algorithms might you use, and how would you evaluate its performance?

12. Can you explain the concept of autoencoders? How are they used for tasks such as dimensionality reduction or anomaly detection?

13. What are adversarial examples in the context of machine learning models? How can they be used to fool models, and what can be done to defend against them?

14. Discuss the role of attention mechanisms in neural networks. How have they improved performance in tasks like machine translation?

15. What is a variational autoencoder (VAE)? How does it differ from a standard autoencoder, and what are its benefits in generating new data?

I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍
👍41
Three different learning styles in machine learning algorithms:

1. Supervised Learning

Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.

A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.

Example problems are classification and regression.

Example algorithms include: Logistic Regression and the Back Propagation Neural Network.

2. Unsupervised Learning

Input data is not labeled and does not have a known result.

A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.

Example problems are clustering, dimensionality reduction and association rule learning.

Example algorithms include: the Apriori algorithm and K-Means.

3. Semi-Supervised Learning

Input data is a mixture of labeled and unlabelled examples.

There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.

Example problems are classification and regression.

Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.

I have curated the best interview resources to crack Data Science Interviews
👇👇
https://news.1rj.ru/str/datalemur

Like if you need similar content 😄👍
👍52
Ai concepts explained
10👍1
To be GOOD in Data Science you need to learn:

- Python
- SQL
- PowerBI

To be GREAT in Data Science you need to add:

- Business Understanding
- Knowledge of Cloud
- Many-many projects

But to LAND a job in Data Science you need to prove you can:

- Learn new things
- Communicate clearly
- Solve problems

#datascience
9👍2