Data Science & Machine Learning – Telegram
Data Science & Machine Learning
73.4K subscribers
794 photos
2 videos
68 files
693 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Data Analytics Interview Preparation
[Questions with Answers]

How did you get your job?

I was hired after an internship. 
To get the internship, I prepared a bunch for general Python questions (LeetCode etc.) and studied the basics of machine learning (several different algorithms, how they work, when they're useful, metrics 
to measure their performance, how to train them in practice etc.). 

To get the internship I had to pass a technical interview as well as a take-home machine learning (ML) exercise. Then, it was just a question of doing a good job in the internship! 

What are your data related responsibilities in your job? 

I work on our recommendation system. It’s deep learning based. I work on a lot of features to try and 
improve it (reinforcement learning & NLP etc). Since I'm in a start-up, it's also up to our team to put the models we design into production. So, after a phase of research & development and model design, in notebooks, it's time to create a real pipeline, by creating noscripts. 
This enables us to define, train, replace, compare and check the status of the models in production. It's basically all in Python, using Keras/TensorFlow, Pandas, Scikit-learn and NumPy. We also do a lot of analysis for the business team to help them compute metrics of interest (related to 
revenue, acquisition etc.). For that, we use an external utility called Metabase. It is is hooked up to our database where we write SQL queries and visualize the results and create dashboards (using 
Tableau/Looker etc). 
I would say my role is quite "full-stack" since we are all involved from the phase of R&D to deployment on our cluster. 

Was it difficult to get this role?

I got hired after an internship. If you come from a scientific background, it's not that hard to transition into data science. All the math is something you will probably have seen already (especially if you're 
doing maths or physics). So, with some preparation and coding practice, you can start applying to internships. 
It took me maybe a month or two of preparation to get some basic ideas of the typical Python data stack (Pandas, Keras, SciKit-learn etc) before I started to send out CVs. Then, if you get an internship, try your best to do the best you can and then maybe you'll be hired after!

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope it helps :)
5
𝐏𝐘𝐓𝐇𝐎𝐍 𝐅𝐎𝐑 𝐄𝐕𝐄𝐑𝐘𝐓𝐇𝐈𝐍𝐆!
8👍1🔥1
Python Projects for Beginners
5
Data Science Essential Libraries
4
SQL beginner to advanced level
6👏5👍1
SQL Joins Simplified
5
SQL Zero to Hero
8🤔2👍1
Machine Learning – Essential Concepts 🚀

1️⃣ Types of Machine Learning

Supervised Learning – Uses labeled data to train models.

Examples: Linear Regression, Decision Trees, Random Forest, SVM


Unsupervised Learning – Identifies patterns in unlabeled data.

Examples: Clustering (K-Means, DBSCAN), PCA


Reinforcement Learning – Models learn through rewards and penalties.

Examples: Q-Learning, Deep Q Networks



2️⃣ Key Algorithms

Regression – Predicts continuous values (Linear Regression, Ridge, Lasso).

Classification – Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naïve Bayes).

Clustering – Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).

Dimensionality Reduction – Reduces the number of features (PCA, t-SNE, LDA).


3️⃣ Model Training & Evaluation

Train-Test Split – Dividing data into training and testing sets.

Cross-Validation – Splitting data multiple times for better accuracy.

Metrics – Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.


4️⃣ Feature Engineering

Handling missing data (mean imputation, dropna()).

Encoding categorical variables (One-Hot Encoding, Label Encoding).

Feature Scaling (Normalization, Standardization).


5️⃣ Overfitting & Underfitting

Overfitting – Model learns noise, performs well on training but poorly on test data.

Underfitting – Model is too simple and fails to capture patterns.

Solution: Regularization (L1, L2), Hyperparameter Tuning.


6️⃣ Ensemble Learning

Combining multiple models to improve performance.

Bagging (Random Forest)

Boosting (XGBoost, Gradient Boosting, AdaBoost)



7️⃣ Deep Learning Basics

Neural Networks (ANN, CNN, RNN).

Activation Functions (ReLU, Sigmoid, Tanh).

Backpropagation & Gradient Descent.


8️⃣ Model Deployment

Deploy models using Flask, FastAPI, or Streamlit.

Model versioning with MLflow.

Cloud deployment (AWS SageMaker, Google Vertex AI).

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
4👍1
📌 Roadmap to Master Machine Learning in 6 Steps

Whether you're just starting or looking to go pro in ML, this roadmap will keep you on track:

1️⃣ Learn the Fundamentals
Build a math foundation (algebra, calculus, stats) + Python + libraries like NumPy & Pandas

2️⃣ Learn Essential ML Concepts
Start with supervised learning (regression, classification), then unsupervised learning (K-Means, PCA)

3️⃣ Understand Data Handling
Clean, transform, and visualize data effectively using summary stats & feature engineering

4️⃣ Explore Advanced Techniques
Delve into ensemble methods, CNNs, deep learning, and NLP fundamentals

5️⃣ Learn Model Deployment
Use Flask, FastAPI, and cloud platforms (AWS, GCP) for scalable deployment

6️⃣ Build Projects & Network
Participate in Kaggle, create portfolio projects, and connect with the ML community

React ❤️ for more
5
The Only roadmap you need to become an ML Engineer 🥳

Phase 1: Foundations (1-2 Months)
🔹 Math & Stats Basics – Linear Algebra, Probability, Statistics
🔹 Python Programming – NumPy, Pandas, Matplotlib, Scikit-Learn
🔹 Data Handling – Cleaning, Feature Engineering, Exploratory Data Analysis

Phase 2: Core Machine Learning (2-3 Months)
🔹 Supervised & Unsupervised Learning – Regression, Classification, Clustering
🔹 Model Evaluation – Cross-validation, Metrics (Accuracy, Precision, Recall, AUC-ROC)
🔹 Hyperparameter Tuning – Grid Search, Random Search, Bayesian Optimization
🔹 Basic ML Projects – Predict house prices, customer segmentation

Phase 3: Deep Learning & Advanced ML (2-3 Months)
🔹 Neural Networks – TensorFlow & PyTorch Basics
🔹 CNNs & Image Processing – Object Detection, Image Classification
🔹 NLP & Transformers – Sentiment Analysis, BERT, LLMs (GPT, Gemini)
🔹 Reinforcement Learning Basics – Q-learning, Policy Gradient

Phase 4: ML System Design & MLOps (2-3 Months)
🔹 ML in Production – Model Deployment (Flask, FastAPI, Docker)
🔹 MLOps – CI/CD, Model Monitoring, Model Versioning (MLflow, Kubeflow)
🔹 Cloud & Big Data – AWS/GCP/Azure, Spark, Kafka
🔹 End-to-End ML Projects – Fraud detection, Recommendation systems

Phase 5: Specialization & Job Readiness (Ongoing)
🔹 Specialize – Computer Vision, NLP, Generative AI, Edge AI
🔹 Interview Prep – Leetcode for ML, System Design, ML Case Studies
🔹 Portfolio Building – GitHub, Kaggle Competitions, Writing Blogs
🔹 Networking – Contribute to open-source, Attend ML meetups, LinkedIn presence

Follow this advanced roadmap to build a successful career in ML!

The data field is vast, offering endless opportunities so start preparing now.
4
Polymorphism in Python 👆
🔥5👍1