Top 20 AI Concepts You Should Know
1 - Machine Learning: Core algorithms, statistics, and model training techniques.
2 - Deep Learning: Hierarchical neural networks learning complex representations automatically.
3 - Neural Networks: Layered architectures efficiently model nonlinear relationships accurately.
4 - NLP: Techniques to process and understand natural language text.
5 - Computer Vision: Algorithms interpreting and analyzing visual data effectively
6 - Reinforcement Learning: Distributed traffic across multiple servers for reliability.
7 - Generative Models: Creating new data samples using learned data.
8 - LLM: Generates human-like text using massive pre-trained data.
9 - Transformers: Self-attention-based architecture powering modern AI models.
10 - Feature Engineering: Designing informative features to improve model performance significantly.
11 - Supervised Learning: Learns useful representations without labeled data.
12 - Bayesian Learning: Incorporate uncertainty using probabilistic model approaches.
13 - Prompt Engineering: Crafting effective inputs to guide generative model outputs.
14 - AI Agents: Autonomous systems that perceive, decide, and act.
15 - Fine-Tuning Models: Customizes pre-trained models for domain-specific tasks.
16 - Multimodal Models: Processes and generates across multiple data types like images, videos, and text.
17 - Embeddings: Transforms input into machine-readable vector formats.
18 - Vector Search: Finds similar items using dense vector embeddings.
19 - Model Evaluation: Assessing predictive performance using validation techniques.
20 - AI Infrastructure: Deploying scalable systems to support AI operations.
Artificial intelligence Resources: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
AI Jobs: https://whatsapp.com/channel/0029VaxtmHsLikgJ2VtGbu1R
Hope this helps you ☺️
1 - Machine Learning: Core algorithms, statistics, and model training techniques.
2 - Deep Learning: Hierarchical neural networks learning complex representations automatically.
3 - Neural Networks: Layered architectures efficiently model nonlinear relationships accurately.
4 - NLP: Techniques to process and understand natural language text.
5 - Computer Vision: Algorithms interpreting and analyzing visual data effectively
6 - Reinforcement Learning: Distributed traffic across multiple servers for reliability.
7 - Generative Models: Creating new data samples using learned data.
8 - LLM: Generates human-like text using massive pre-trained data.
9 - Transformers: Self-attention-based architecture powering modern AI models.
10 - Feature Engineering: Designing informative features to improve model performance significantly.
11 - Supervised Learning: Learns useful representations without labeled data.
12 - Bayesian Learning: Incorporate uncertainty using probabilistic model approaches.
13 - Prompt Engineering: Crafting effective inputs to guide generative model outputs.
14 - AI Agents: Autonomous systems that perceive, decide, and act.
15 - Fine-Tuning Models: Customizes pre-trained models for domain-specific tasks.
16 - Multimodal Models: Processes and generates across multiple data types like images, videos, and text.
17 - Embeddings: Transforms input into machine-readable vector formats.
18 - Vector Search: Finds similar items using dense vector embeddings.
19 - Model Evaluation: Assessing predictive performance using validation techniques.
20 - AI Infrastructure: Deploying scalable systems to support AI operations.
Artificial intelligence Resources: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
AI Jobs: https://whatsapp.com/channel/0029VaxtmHsLikgJ2VtGbu1R
Hope this helps you ☺️
❤3
When preparing for an SQL project-based interview, the focus typically shifts from theoretical knowledge to practical application. Here are some SQL project-based interview questions that could help assess your problem-solving skills and experience:
1. Database Design and Schema
- Question: Describe a database schema you have designed in a past project. What were the key entities, and how did you establish relationships between them?
- Follow-Up: How did you handle normalization? Did you denormalize any tables for performance reasons?
2. Data Modeling
- Question: How would you model a database for an e-commerce application? What tables would you include, and how would they relate to each other?
- Follow-Up: How would you design the schema to handle scenarios like discount codes, product reviews, and inventory management?
3. Query Optimization
- Question: Can you discuss a time when you optimized an SQL query? What was the original query, and what changes did you make to improve its performance?
- Follow-Up: What tools or techniques did you use to identify and resolve the performance issues?
4. ETL Processes
- Question: Describe an ETL (Extract, Transform, Load) process you have implemented. How did you handle data extraction, transformation, and loading?
- Follow-Up: How did you ensure data quality and consistency during the ETL process?
5. Handling Large Datasets
- Question: In a project where you dealt with large datasets, how did you manage performance and storage issues?
- Follow-Up: What indexing strategies or partitioning techniques did you use?
6. Joins and Subqueries
- Question: Provide an example of a complex query you wrote involving multiple joins and subqueries. What was the business problem you were solving?
- Follow-Up: How did you ensure that the query performed efficiently?
7. Stored Procedures and Functions
- Question: Have you created stored procedures or functions in any of your projects? Can you describe one and explain why you chose to encapsulate the logic in a stored procedure?
- Follow-Up: How did you handle error handling and logging within the stored procedure?
8. Data Integrity and Constraints
- Question: How did you enforce data integrity in your SQL projects? Can you give examples of constraints (e.g., primary keys, foreign keys, unique constraints) you implemented?
- Follow-Up: How did you handle situations where constraints needed to be temporarily disabled or modified?
9. Version Control and Collaboration
- Question: How did you manage database version control in your projects? What tools or practices did you use to ensure collaboration with other developers?
- Follow-Up: How did you handle conflicts or issues arising from multiple developers working on the same database?
10. Data Migration
- Question: Describe a data migration project you worked on. How did you ensure that the migration was successful, and what steps did you take to handle data inconsistencies or errors?
- Follow-Up: How did you test the migration process before moving to the production environment?
11. Security and Permissions
- Question: In your SQL projects, how did you manage database security?
- Follow-Up: How did you handle encryption or sensitive data within the database?
12. Handling Unstructured Data
- Question: Have you worked with unstructured or semi-structured data in an SQL environment?
- Follow-Up: What challenges did you face, and how did you overcome them?
13. Real-Time Data Processing
- Question: Can you describe a project where you handled real-time data processing using SQL? What were the key challenges, and how did you address them?
- Follow-Up: How did you ensure the performance and reliability of the real-time data processing system?
Be prepared to discuss specific examples from your past work and explain your thought process in detail.
Here you can find SQL Interview Resources👇
https://news.1rj.ru/str/DataSimplifier
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
1. Database Design and Schema
- Question: Describe a database schema you have designed in a past project. What were the key entities, and how did you establish relationships between them?
- Follow-Up: How did you handle normalization? Did you denormalize any tables for performance reasons?
2. Data Modeling
- Question: How would you model a database for an e-commerce application? What tables would you include, and how would they relate to each other?
- Follow-Up: How would you design the schema to handle scenarios like discount codes, product reviews, and inventory management?
3. Query Optimization
- Question: Can you discuss a time when you optimized an SQL query? What was the original query, and what changes did you make to improve its performance?
- Follow-Up: What tools or techniques did you use to identify and resolve the performance issues?
4. ETL Processes
- Question: Describe an ETL (Extract, Transform, Load) process you have implemented. How did you handle data extraction, transformation, and loading?
- Follow-Up: How did you ensure data quality and consistency during the ETL process?
5. Handling Large Datasets
- Question: In a project where you dealt with large datasets, how did you manage performance and storage issues?
- Follow-Up: What indexing strategies or partitioning techniques did you use?
6. Joins and Subqueries
- Question: Provide an example of a complex query you wrote involving multiple joins and subqueries. What was the business problem you were solving?
- Follow-Up: How did you ensure that the query performed efficiently?
7. Stored Procedures and Functions
- Question: Have you created stored procedures or functions in any of your projects? Can you describe one and explain why you chose to encapsulate the logic in a stored procedure?
- Follow-Up: How did you handle error handling and logging within the stored procedure?
8. Data Integrity and Constraints
- Question: How did you enforce data integrity in your SQL projects? Can you give examples of constraints (e.g., primary keys, foreign keys, unique constraints) you implemented?
- Follow-Up: How did you handle situations where constraints needed to be temporarily disabled or modified?
9. Version Control and Collaboration
- Question: How did you manage database version control in your projects? What tools or practices did you use to ensure collaboration with other developers?
- Follow-Up: How did you handle conflicts or issues arising from multiple developers working on the same database?
10. Data Migration
- Question: Describe a data migration project you worked on. How did you ensure that the migration was successful, and what steps did you take to handle data inconsistencies or errors?
- Follow-Up: How did you test the migration process before moving to the production environment?
11. Security and Permissions
- Question: In your SQL projects, how did you manage database security?
- Follow-Up: How did you handle encryption or sensitive data within the database?
12. Handling Unstructured Data
- Question: Have you worked with unstructured or semi-structured data in an SQL environment?
- Follow-Up: What challenges did you face, and how did you overcome them?
13. Real-Time Data Processing
- Question: Can you describe a project where you handled real-time data processing using SQL? What were the key challenges, and how did you address them?
- Follow-Up: How did you ensure the performance and reliability of the real-time data processing system?
Be prepared to discuss specific examples from your past work and explain your thought process in detail.
Here you can find SQL Interview Resources👇
https://news.1rj.ru/str/DataSimplifier
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤6
Tableau Cheat Sheet ✅
This Tableau cheatsheet is designed to be your quick reference guide for data visualization and analysis using Tableau. Whether you’re a beginner learning the basics or an experienced user looking for a handy resource, this cheatsheet covers essential topics.
1. Connecting to Data
- Use *Connect* pane to connect to various data sources (Excel, SQL Server, Text files, etc.).
2. Data Preparation
- Data Interpreter: Clean data automatically using the Data Interpreter.
- Join Data: Combine data from multiple tables using joins (Inner, Left, Right, Outer).
- Union Data: Stack data from multiple tables with the same structure.
3. Creating Views
- Drag & Drop: Drag fields from the Data pane onto Rows, Columns, or Marks to create visualizations.
- Show Me: Use the *Show Me* panel to select different visualization types.
4. Types of Visualizations
- Bar Chart: Compare values across categories.
- Line Chart: Display trends over time.
- Pie Chart: Show proportions of a whole (use sparingly).
- Map: Visualize geographic data.
- Scatter Plot: Show relationships between two variables.
5. Filters
- Dimension Filters: Filter data based on categorical values.
- Measure Filters: Filter data based on numerical values.
- Context Filters: Set a context for other filters to improve performance.
6. Calculated Fields
- Create calculated fields to derive new data:
- Example:
7. Parameters
- Use parameters to allow user input and control measures dynamically.
8. Formatting
- Format fonts, colors, borders, and lines using the Format pane for better visual appeal.
9. Dashboards
- Combine multiple sheets into a dashboard using the *Dashboard* tab.
- Use dashboard actions (filter, highlight, URL) to create interactivity.
10. Story Points
- Create a story to guide users through insights with narrative and visualizations.
11. Publishing & Sharing
- Publish dashboards to Tableau Server or Tableau Online for sharing and collaboration.
12. Export Options
- Export to PDF or image for offline use.
13. Keyboard Shortcuts
- Show/Hide Sidebar:
- Duplicate Sheet:
- Undo:
- Redo:
14. Performance Optimization
- Use extracts instead of live connections for faster performance.
- Optimize calculations and filters to improve dashboard loading times.
Best Resources to learn Tableau: https://whatsapp.com/channel/0029VasYW1V5kg6z4EHOHG1t
Hope you'll like it
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
This Tableau cheatsheet is designed to be your quick reference guide for data visualization and analysis using Tableau. Whether you’re a beginner learning the basics or an experienced user looking for a handy resource, this cheatsheet covers essential topics.
1. Connecting to Data
- Use *Connect* pane to connect to various data sources (Excel, SQL Server, Text files, etc.).
2. Data Preparation
- Data Interpreter: Clean data automatically using the Data Interpreter.
- Join Data: Combine data from multiple tables using joins (Inner, Left, Right, Outer).
- Union Data: Stack data from multiple tables with the same structure.
3. Creating Views
- Drag & Drop: Drag fields from the Data pane onto Rows, Columns, or Marks to create visualizations.
- Show Me: Use the *Show Me* panel to select different visualization types.
4. Types of Visualizations
- Bar Chart: Compare values across categories.
- Line Chart: Display trends over time.
- Pie Chart: Show proportions of a whole (use sparingly).
- Map: Visualize geographic data.
- Scatter Plot: Show relationships between two variables.
5. Filters
- Dimension Filters: Filter data based on categorical values.
- Measure Filters: Filter data based on numerical values.
- Context Filters: Set a context for other filters to improve performance.
6. Calculated Fields
- Create calculated fields to derive new data:
- Example:
Sales Growth = SUM([Sales]) - SUM([Previous Sales])7. Parameters
- Use parameters to allow user input and control measures dynamically.
8. Formatting
- Format fonts, colors, borders, and lines using the Format pane for better visual appeal.
9. Dashboards
- Combine multiple sheets into a dashboard using the *Dashboard* tab.
- Use dashboard actions (filter, highlight, URL) to create interactivity.
10. Story Points
- Create a story to guide users through insights with narrative and visualizations.
11. Publishing & Sharing
- Publish dashboards to Tableau Server or Tableau Online for sharing and collaboration.
12. Export Options
- Export to PDF or image for offline use.
13. Keyboard Shortcuts
- Show/Hide Sidebar:
Ctrl+Alt+T- Duplicate Sheet:
Ctrl + D- Undo:
Ctrl + Z- Redo:
Ctrl + Y14. Performance Optimization
- Use extracts instead of live connections for faster performance.
- Optimize calculations and filters to improve dashboard loading times.
Best Resources to learn Tableau: https://whatsapp.com/channel/0029VasYW1V5kg6z4EHOHG1t
Hope you'll like it
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)